You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This package contains a generic implementation of greedy Information Theoretic Feature Selection (FS) methods. The implementation is based on the common theoretic framework presented by Gavin Brown. Implementations of mRMR, InfoGain, JMI and other commonly used FS filters are provided.
This is an App developed in Python to implement the algorithm for minimum redundancy maximum ralevance. The formulation was based on a research paper from Chris Ding and Hanchuan Peng (Minimum Redundancy Feature Selection from Microarray Gene Expression Data).
A project that focuses on implementing a hybrid approach that modifies the identification of biomarker genes for better categorization of cancer. The methodology is a fusion of MRMR filter method for feature selection, steady state genetic algorithm and a MLP classifier.
Cardiovasular Disease Detection using Naive Bayes, Logistic Regression, Random Forest & Support Vector Machine, while comparing the Naive Bayes models with the rest. LIME was also used to explain the predictions of the model.