This folder contains the official implementation of paper It's All In the Teacher: Zero-Shot Quantization Brought Closer to the Teacher on GDFQ, Qimera, AutoReCon framework.
- Python 3.6
- PyTorch 1.10.1
- Refer requirements.txt for other requirements
We recommend using Python virtual environment to run this code.
You can install requirements with the command below.
pip install -r requirements.txt
ait_code
├── figs
├── AutoReCon_AIT
│ ├── main.py
│ ├── optimizer.py # GI implementation
│ ├── option.py
│ ├── trainer.py
│ ├── {DATASET}_{NETWORK}.hocon # Setting files
│ ├── run_{DATASET}_{NETWORK}_{BITWIDTH}bit.sh # Train scripts
│ ├── trainer.py
│ └── ... # Utils
├── GDFQ_AIT
│ └── ... # Similar to above
├── Qimera_AIT
│ └── ... # Similar to above
├── LICENSE.md
├── README.md
└── requirements.txt
For Imagenet training, change the path of the validation set in .hocon file. To train the model described in the paper, run one of this command:
./run_cifar10_4bit.sh
./run_cifar100_4bit.sh
./run_imgnet_resnet18_4bit.sh
./run_imgnet_resnet50_4bit.sh
./run_imgnet_mobilenet_v2_4bit.sh
The script name is same for all experiment framework.
- --conf_path : path to .hocon file
- --ce_scale : coefficient of Cross-Entropy loss
- --kd_scale : coefficient of KL-Divergence loss
- --passing_threshold : update ratio of quanized parameter per step
- --alpha_iter : GI search step limit
- --adalr : enable GI
This project is licensed under the terms of the GNU General Public License v3.0