[go: up one dir, main page]

Skip to content
/ calda Public

Contrastive Adversarial Learning for Multi-Source Time Series Domain Adaptation

Notifications You must be signed in to change notification settings

floft/calda

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contrastive Adversarial Learning for Multi-Source Time Series Domain Adaptation

Overview:

  • Download data and convert to .tfrecord files for TensorFlow (./generate_tfrecords.sh)
  • Train models (main.py)
  • Evaluate models (main_eval.py)
  • Analyze results (analysis.py)

Installation

We used CUDA 10.1.105, CuDNN 7.6.4.38, Python 3.7.4, TensorFlow-GPU 2.2.0, and PyTorch 1.9.0. We installed the following packages via pip:

pip install --user --upgrade numpy cython
pip install --user --upgrade tensorflow-gpu pillow lxml jupyter matplotlib \
    pandas scikit-learn scipy tensorboard tqdm pyyaml grpcio absl-py \
    tensorflow-addons torch torchvision easydict torchinfo pickle5

Note: the final few packages (e.g. PyTorch) are for the CAN baseline.

If you want to verify that everything is installed correctly, you can run the ./test.sh script that calls generate_tfrecords.sh followed by a number of short experiments (~30 minutes total).

Usage

Example

Train a CALDA-XS,H model on person 1 and 2 of the UCI HAR dataset and adapt to person 3.

python3 main.py \
    --logdir=example-logs --modeldir=example-models \
    --method=calda_xs_h --dataset=ucihar --sources=1,2 \
    --target=3 --uid=0 --debugnum=0 --gpumem=0

Monitor training progress:

tensorboard --logdir example-logs

Then evaluate that model on the holdout test data, outputting the results to a YAML file.

mkdir -p results
python3 main_eval.py \
    --logdir=example-logs --modeldir=example-models \
    --jobs=1 --gpus=1 --gpumem=0 \
    --match="ucihar-0-calda_xs_h-[0-9]*" --selection="best_target" \
    --output_file=results/results_example_best_target-ucihar-0-calda_xs_h.yaml

Specifically, look at accuracy_task/target/validation in the YAML result file for the target domain test set accuracy.

Full Experiments

If you want to run all of the experiments, you can generate the SLURM training scripts:

./experiments_msda.py --name experiments

Then, run the kamiak_{train,eval}_experiments.srun on your SLURM cluster after installing TensorFlow, etc. (some modification to these scripts may be required to make this work on your cluster).

If you want to re-run hyperparameter tuning, you can generate the tuning scripts as well, though the results of tuning are already included in hyperparameters.py.

./experiments_msda.py --tune --name=tune

Note before using the SLURM scripts, you will need to update kamiak_config.sh to the correct paths and kamiak_tensorflow_gpu.sh and kamiak_tensorflow_cpu.sh to load the appropriate packages.

Baselines

The No Adaptation and CoDATS baselines are included in this repository. However, the CAN baseline is a fork of the code from their original paper. To run the CAN baseline on the time series datasets:

  • Download repositories
    • Clone this repo to calda
    • Clone the CAN baseline repository into Contrastive-Adaptation-Network-for-Unsupervised-Domain-Adaptation
    • Note: the SLURM scripts require these two directory names and them both having the same parent directory.
  • Create pickle files for the datasets (./generate_tfrecords_as_images.sh)
  • Run individual train/test as explained in the CAN baseline repository instructions.

Alternatively, for full hyperparameter tuning (following same procedure as for CALDA described earlier), after optionally updating the hyperparameter set in hyperparameter_tuning_experiments_can.py. Note that the hyperparameters we found to be the best are already included in hyperparameters.py.

./experiments_msda.py --can --tune --name can_tune

For the full set of experiments, after hyperparameter tuning and analysis:

./experiments_msda.py --can --name can_tuned

This will generate the SLURM train/eval scripts for all of the CAN baseline experiments.

Analysis

Then look at the resulting results/results_*.yaml files or analyze with analysis.py.

Navigating the Code

In the paper we propose CALDA which has a variety of different variations that can be chosen with the --method=... flag. The options are (e.g., corresponding to the names CALDA-XS,R, CALDA-In,R, etc. in the paper):

- none
- upper
- codats
- calda_xs_r
- calda_in_r
- calda_any_r
- calda_xs_h
- calda_in_h
- calda_any_h
- calda_xs_r_p
- calda_in_r_p
- calda_any_r_p
- calda_xs_h_p
- calda_in_h_p
- calda_any_h_p
- codats_ws
- calda_xs_h_ws
- calda_any_r_ws
- codats_dg
- sleep_dg
- aflac_dg
- caldg_xs_h
- caldg_any_r
- calda_xs_h_noadv
- calda_any_r_noadv

The code for these methods is found in methods.py:MethodCaldaBase. The function for computing the contrastive loss is _similarity_loss() within this class.

About

Contrastive Adversarial Learning for Multi-Source Time Series Domain Adaptation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published