[go: up one dir, main page]

Skip to content

evetion/LazIO.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CI codecov

LazIO

Extends LasIO with LASzip integration.

Uses the LASzip shared library to read compressed las files (*.laz) into the uncompressed format that LasIO reads natively.

julia> using LazIO

# Open file and iterate over points
julia> ds = LazIO.open("test/libLAS_1.2.laz")
LazIO Dataset of test/libLAS_1.2.laz with 497536 points of version 0.

# Each point is correctly scaled and has its return_number and classification widened
julia> p = ds[1]
LazIO.Point0(1.44013394e6, 375000.23, 846.66, 0x00fa, 0x00, 0x00, 0x00, false, 2, false, false, false, 0x00, 0x001d)

# This results in accessible attributes, such as edge_of_flightline and withheld
julia> fieldnames(typeof(p))
(:x, :y, :z, :intensity, :return_number, :number_of_returns, :scan_direction, :edge_of_flight_line, :classification, :synthetic, :key_point, :withheld, :user_data, :point_source_id)

# LazIO implements the GeoInterface
julia> using GeoInterface
julia> GeoInterface.coordinates(p)
3-element Vector{Float64}:
      1.44013394e6
 375000.23
    846.66
julia> GeoInterface.extent(ds)
Extent(X = (1.44e6, 1.44499996e6), Y = (375000.03, 379999.99), Z = (832.1800000000001, 972.6700000000001))

# Or one can use the Tables interface
julia> using DataFrames
julia> DataFrame(ds)
497536×14 DataFrame
    Row │ x          y               z        intensity  return_number  number 
        │ Float64    Float64         Float64  UInt16     UInt8          UInt8  
────────┼───────────────────────────────────────────────────────────────────────
      11.44013e6       3.75e5      846.66        250              0         
      21.44012e6       3.75e5      846.55        245              0
      31.44011e6       3.75001e5   846.44        239              0
      41.4401e6   375001.0         846.32        251              0
      51.44009e6       3.75001e5   846.21        229              0         
      61.44009e6       3.75002e5   846.1         249              0
      71.44008e6       3.75002e5   846.0         189              0
      81.44007e6       3.75002e5   845.9         250              0

Plotting is done via either the Plots, or Makie ecosystem. The latter is recommended for large datasets.

julia> # using Plots
julia> using GLMakie
julia> plot(ds)