garden/fourier-vector.md
2025-10-27 10:23:53 -06:00

420 B

Fourier Vector

  • quantum-computing
  • `\displaystyle\ket{\varphi_j} = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \omega_N^{i \cdot j} \ket{i}`
  • quantum-fourier-transform: `\displaystyle\mathbb{F}_N = \sum_{j} \ket{\varphi_j} \bra{j}`
    • `\mathbb{F}^\intercal = \mathbb{F} \Rightarrow \mathbb{F}^{-1} = \overline{\mathbb{F}}`
  • fourier-basis: special case when `N = 2`