[go: up one dir, main page]

summaryrefslogtreecommitdiff
path: root/karpet/core.py
diff options
context:
space:
mode:
Diffstat (limited to 'karpet/core.py')
-rw-r--r--karpet/core.py78
1 files changed, 0 insertions, 78 deletions
diff --git a/karpet/core.py b/karpet/core.py
index 256942d..afae107 100644
--- a/karpet/core.py
+++ b/karpet/core.py
@@ -1,6 +1,5 @@
try:
from pytrends.request import TrendReq
- from twitterscraper import query_tweets
except:
pass
@@ -273,83 +272,6 @@ class Karpet:
return df.sort_values("date").reset_index(drop=True)
- # def fetch_tweets(self, kw_list, lang, limit=None):
- # """
- # Scrapes Twitter without any limits and returns dataframe with the
- # following structure
-
- # * fullname
- # * id
- # * likes
- # * replies
- # * retweets
- # * text
- # * timestamp
- # * url
- # * user
- # * date
- # * has_link
-
- # :param list kw_list: List of keywords to search for. Will be joined with "OR" operator.
- # :param str lang: Language of tweets to search in.
- # :param int limit: Limit search results. Might get really big and slow so this should help.
- # :return: Pandas dataframe with all search results (tweets).
- # :rtype: pd.DataFrame
- # """
-
- # def process_tweets(tweets):
- # """
- # Cleans up tweets and returns dataframe with the
- # following structure
-
- # * fullname
- # * id
- # * likes
- # * replies
- # * retweets
- # * text
- # * timestamp
- # * url
- # * user
- # * date
- # * has_link
-
- # :param list tweets: List of dicts of tweets data.
- # :return: Returns dataframe with all the scraped tweets (no index).
- # :rtype: pd.DataFrame
- # """
-
- # # 1. Clean up.
- # data = []
-
- # for t in tweets:
- # d = t.__dict__
- # del d["html"]
- # data.append(d)
-
- # # 2. Create dataframe
- # df = pd.DataFrame(data)
- # # import pdb
-
- # # pdb.set_trace()
- # df["date"] = df["timestamp"].dt.date
- # df["has_link"] = df["text"].apply(
- # lambda text: "http://" in text or "https://" in text
- # )
-
- # return df
-
- # try:
- # _ = query_tweets
- # except NameError:
- # raise Exception("Twitter extension is not installed - see README file.")
-
- # tweets = query_tweets(
- # query=" OR ".join(kw_list), begindate=self.start, lang=lang, limit=limit
- # )
-
- # return process_tweets(tweets)
-
def fetch_news(self, symbol, limit=10):
"""
Fetches news of the given symbol. Each news contains