[go: up one dir, main page]

Follow
Johannes Lederer
Johannes Lederer
Professor of Data-Driven Methods, University of Hamburg
Verified email at uni-hamburg.de - Homepage
Title
Cited by
Cited by
Year
On the prediction performance of the lasso
AS Dalalyan, M Hebiri, J Lederer
2382017
Activation functions in artificial neural networks: A systematic overview
J Lederer
arXiv preprint arXiv:2101.09957, 2021
1862021
How correlations influence lasso prediction
M Hebiri, J Lederer
IEEE Transactions on Information Theory 59 (3), 1846-1854, 2012
1602012
The group square-root lasso: Theoretical properties and fast algorithms
F Bunea, J Lederer, Y She
IEEE Transactions on Information Theory 60 (2), 1313-1325, 2013
1272013
Is there a role for statistics in artificial intelligence?
S Friedrich, G Antes, S Behr, H Binder, W Brannath, F Dumpert, K Ickstadt, ...
Advances in Data Analysis and Classification 16 (4), 823-846, 2022
1122022
The Bernstein-Orlicz norm and deviation inequalities
S van de Geer, J Lederer
arXiv preprint arXiv:1111.2450, 2011
1082011
A practical scheme and fast algorithm to tune the lasso with optimality guarantees
M Chichignoud, J Lederer, MJ Wainwright
Journal of Machine Learning Research 17 (229), 1-20, 2016
88*2016
Don't fall for tuning parameters: tuning-free variable selection in high dimensions with the TREX
J Lederer, C Müller
Proceedings of the AAAI conference on artificial intelligence 29 (1), 2015
842015
The Lasso, correlated design, and improved oracle inequalities
S Van de Geer, J Lederer
From Probability to Statistics and Back: High-Dimensional Models and …, 2013
732013
Fundamentals of High-Dimensional Statistics
J Lederer
Springer International Publishing, Cham, Switzerland, 2022
69*2022
Inference for high-dimensional instrumental variables regression
D Gold, J Lederer, J Tao
Journal of Econometrics 217 (1), 79-111, 2020
672020
Statistical guarantees for regularized neural networks
M Taheri, F Xie, J Lederer
Neural Networks 142, 148-161, 2021
562021
Oracle inequalities for high-dimensional prediction
J Lederer, L Yu, I Gaynanova
422019
New concentration inequalities for suprema of empirical processes
J Lederer, S Van De Geer
402014
Anomalydino: Boosting patch-based few-shot anomaly detection with dinov2
S Damm, M Laszkiewicz, J Lederer, A Fischer
2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV …, 2025
362025
Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions
J Lederer
arXiv preprint arXiv:1306.0113, 2013
342013
Risk bounds for robust deep learning
J Lederer
arXiv preprint arXiv:2009.06202, 2020
292020
Balancing statistical and computational precision: a general theory and applications to sparse regression
M Taheri, N Lim, J Lederer
IEEE Transactions on Information Theory 69 (1), 316-333, 2022
27*2022
Estimating the Lasso's effective noise
J Lederer, M Vogt
Journal of Machine Learning Research 22 (276), 1-32, 2021
272021
Integrating additional knowledge into the estimation of graphical models
Y Bu, J Lederer
The international journal of biostatistics 18 (1), 1-17, 2022
252022
The system can't perform the operation now. Try again later.
Articles 1–20