[go: up one dir, main page]

Follow
Morteza Mardani
Morteza Mardani
NVIDIA Research & Stanford University
Verified email at nvidia.com - Homepage
Title
Cited by
Cited by
Year
Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators
J Pathak, S Subramanian, P Harrington, S Raja, A Chattopadhyay, ...
arXiv preprint arXiv:2202.11214, 2022
1559*2022
ediff-i: Text-to-image diffusion models with an ensemble of expert denoisers
Y Balaji, S Nah, X Huang, A Vahdat, J Song, Q Zhang, K Kreis, M Aittala, ...
arXiv preprint arXiv:2211.01324, 2022
10502022
Deep generative adversarial neural networks for compressive sensing MRI
M Mardani, E Gong, JY Cheng, SS Vasanawala, G Zaharchuk, L Xing, ...
IEEE transactions on medical imaging 38 (1), 167-179, 2018
987*2018
Subspace learning and imputation for streaming big data matrices and tensors
M Mardani, G Mateos, GB Giannakis
IEEE Transactions on Signal Processing 63 (10), 2663-2677, 2015
556*2015
Scalable attention for transformers via adaptive fourier neural operators
J Guibas, M Mardani, Z Li, A Tao, A Anandkumar, B Catanzaro
International conference on learning representations, 2021
531*2021
Pseudoinverse-guided diffusion models for inverse problems
J Song, A Vahdat, M Mardani, J Kautz
International Conference on Learning Representations, 2023
4652023
Physdiff: Physics-guided human motion diffusion model
Y Yuan, J Song, U Iqbal, A Vahdat, J Kautz
Proceedings of the IEEE/CVF international conference on computer vision …, 2023
4422023
Compressed sensing: From research to clinical practice with deep neural networks: Shortening scan times for magnetic resonance imaging
CM Sandino, JY Cheng, F Chen, M Mardani, JM Pauly, SS Vasanawala
IEEE signal processing magazine 37 (1), 117-127, 2020
307*2020
A variational perspective on solving inverse problems with diffusion models
M Mardani, J Song, J Kautz, A Vahdat
arXiv preprint arXiv:2305.04391, 2023
2102023
Neural proximal gradient descent for compressive imaging
M Mardani, Q Sun, D Donoho, V Papyan, H Monajemi, S Vasanawala, ...
Advances in Neural Information Processing Systems 31, 2018
1892018
Big Data
M Mardani, G Mateos, GB Giannakis
Cooperative and Graph Signal Processing, 777-797, 2018
181*2018
Loss-guided diffusion models for plug-and-play controllable generation
J Song, Q Zhang, H Yin, M Mardani, MY Liu, J Kautz, Y Chen, A Vahdat
International Conference on Machine Learning, 32483-32498, 2023
1772023
Dynamic anomalography: Tracking network anomalies via sparsity and low rank
M Mardani, G Mateos, GB Giannakis
IEEE Journal of Selected Topics in Signal Processing 7 (1), 50-66, 2012
1702012
Residual corrective diffusion modeling for km-scale atmospheric downscaling
M Mardani, N Brenowitz, Y Cohen, J Pathak, CY Chen, CC Liu, A Vahdat, ...
Nature Communications 6 (1), 124, 2025
149*2025
Uncertainty quantification in deep MRI reconstruction
V Edupuganti, M Mardani, S Vasanawala, J Pauly
IEEE Transactions on Medical Imaging 40 (1), 239-250, 2020
1472020
Residual denoising diffusion models
J Liu, Q Wang, H Fan, Y Wang, Y Tang, L Qu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024
1462024
Manifold preserving guided diffusion
Y He, N Murata, CH Lai, Y Takida, T Uesaka, D Kim, WH Liao, Y Mitsufuji, ...
arXiv preprint arXiv:2311.16424, 2023
1252023
Recovery of low-rank plus compressed sparse matrices
M Mardani, G Mateos, GB Giannakis
IEEE Transactions on Information Theory 59 (8), 5186-5205, 2013
1172013
Completing any low-rank matrix, provably
Y Chen, S Bhojanapalli, S Sanghavi, R Ward
The Journal of Machine Learning Research 16 (1), 2999-3034, 2015
1102015
Decentralized sparsity-regularized rank minimization: Algorithms and applications
M Mardani, G Mateos, GB Giannakis
IEEE Transactions on Signal Processing 61 (21), 5374-5388, 2013
842013
The system can't perform the operation now. Try again later.
Articles 1–20