[go: up one dir, main page]

Follow
Martin Wistuba
Martin Wistuba
Amazon Web Services
Verified email at ismll.de
Title
Cited by
Cited by
Year
Adversarial Robustness Toolbox v1. 0.0
MI Nicolae, M Sinn, MN Tran, B Buesser, A Rawat, M Wistuba, ...
arXiv preprint arXiv:1807.01069, 2018
8532018
Learning time-series shapelets
J Grabocka, N Schilling, M Wistuba, L Schmidt-Thieme
Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014
6712014
A survey on neural architecture search
M Wistuba, A Rawat, T Pedapati
arXiv preprint arXiv:1905.01392, 2019
4612019
Scalable gaussian process-based transfer surrogates for hyperparameter optimization
M Wistuba, N Schilling, L Schmidt-Thieme
Machine Learning 107 (1), 43-78, 2018
1772018
A comprehensive survey on hardware-aware neural architecture search
H Benmeziane, KE Maghraoui, H Ouarnoughi, S Niar, M Wistuba, ...
arXiv preprint arXiv:2101.09336, 2021
1652021
Learning hyperparameter optimization initializations
M Wistuba, N Schilling, L Schmidt-Thieme
2015 IEEE international conference on data science and advanced analytics …, 2015
1542015
Few-shot Bayesian optimization with deep kernel surrogates
M Wistuba, J Grabocka
arXiv preprint arXiv:2101.07667, 2021
1102021
Hyperparameter search space pruning–a new component for sequential model-based hyperparameter optimization
M Wistuba, N Schilling, L Schmidt-Thieme
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2015
1102015
Ultra-fast shapelets for time series classification
M Wistuba, J Grabocka, L Schmidt-Thieme
arXiv preprint arXiv:1503.05018, 2015
1032015
Fast classification of univariate and multivariate time series through shapelet discovery
J Grabocka, M Wistuba, L Schmidt-Thieme
Knowledge and information systems 49 (2), 429-454, 2016
972016
Two-stage transfer surrogate model for automatic hyperparameter optimization
M Wistuba, N Schilling, L Schmidt-Thieme
Joint European conference on machine learning and knowledge discovery in …, 2016
952016
Personalized deep learning for tag recommendation
HTH Nguyen, M Wistuba, J Grabocka, LR Drumond, L Schmidt-Thieme
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 186-197, 2017
902017
Memory efficient continual learning with transformers
B Ermis, G Zappella, M Wistuba, A Rawal, C Archambeau
Advances in Neural Information Processing Systems 35, 10629-10642, 2022
892022
Hardware-Aware Neural Architecture Search: Survey and Taxonomy.
H Benmeziane, K El Maghraoui, H Ouarnoughi, S Niar, M Wistuba, ...
IJCAI 2021, 4322-4329, 2021
852021
Deep learning architecture search by neuro-cell-based evolution with function-preserving mutations
M Wistuba
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2018
732018
Learning dtw-shapelets for time-series classification
M Shah, J Grabocka, N Schilling, M Wistuba, L Schmidt-Thieme
Proceedings of the 3rd IKDD Conference on Data Science, 2016, 1-8, 2016
702016
Syne tune: A library for large scale hyperparameter tuning and reproducible research
D Salinas, M Seeger, A Klein, V Perrone, M Wistuba, C Archambeau
International Conference on Automated Machine Learning, 16/1-23, 2022
632022
Sequential model-free hyperparameter tuning
M Wistuba, N Schilling, L Schmidt-Thieme
2015 IEEE international conference on data mining, 1033-1038, 2015
632015
Optimal exploitation of clustering and history information in multi-armed bandit
D Bouneffouf, S Parthasarathy, H Samulowitz, M Wistub
arXiv preprint arXiv:1906.03979, 2019
582019
Practical Deep Learning Architecture Optimization
M Wistuba
2018 IEEE 5th International Conference on Data Science and Advanced …, 2018
53*2018
The system can't perform the operation now. Try again later.
Articles 1–20