[go: up one dir, main page]

Follow
James P. Hobert
James P. Hobert
Professor of Statistics, University of Florida
Verified email at ufl.edu
Title
Cited by
Cited by
Year
Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
JG Booth, JP Hobert
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 1999
8161999
The effect of improper priors on Gibbs sampling in hierarchical linear mixed models
JP Hobert, G Casella
Journal of the American Statistical Association 91 (436), 1461-1473, 1996
6691996
Honest exploration of intractable probability distributions via Markov chain Monte Carlo
GL Jones, JP Hobert
Statistical Science, 312-334, 2001
3902001
2. random-effects modeling of categorical response data
A Agresti, JG Booth, JP Hobert, B Caffo
Sociological Methodology 30 (1), 27-80, 2000
2752000
Standard errors of prediction in generalized linear mixed models
JG Booth, JP Hobert
Journal of the American Statistical Association 93 (441), 262-272, 1998
2561998
Negative binomial loglinear mixed models
JG Booth, G Casella, H Friedl, JP Hobert
Statistical Modelling 3 (3), 179-191, 2003
1882003
On the applicability of regenerative simulation in Markov chain Monte Carlo
JP Hobert, GL Jones, B Presnell, JS Rosenthal
Biometrika 89 (4), 731-743, 2002
1592002
Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
GL Jones, JP Hobert
1522004
Clustering using objective functions and stochastic search
JG Booth, G Casella, JP Hobert
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2008
1512008
The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic
HM Choi, JP Hobert
1352013
Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression
V Roy, JP Hobert
Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2007
1072007
Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model
JP Hobert, CJ Geyer
Journal of Multivariate Analysis 67 (2), 414-430, 1998
1061998
A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms
JP Hobert, D Marchev
1012008
Functional compatibility, Markov chains, and Gibbs sampling with improper posteriors
JP Hobert, G Casella
Journal of Computational and Graphical Statistics 7 (1), 42-60, 1998
871998
A survey of Monte Carlo algorithms for maximizing the likelihood of a two-stage hierarchical model
JG Booth, JP Hobert, W Jank
Statistical Modelling 1 (4), 333-349, 2001
772001
The data augmentation algorithm: Theory and methodology
JP Hobert
Handbook of Markov Chain Monte Carlo, 253-293, 2011
732011
Geometric ergodicity of the Bayesian lasso
K Khare, JP Hobert
602013
Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model
D Marchev, JP Hobert
Journal of the American Statistical Association 99 (465), 228-238, 2004
592004
Block Gibbs sampling for Bayesian random effects models with improper priors: Convergence and regeneration
A Tan, JP Hobert
Journal of Computational and Graphical Statistics 18 (4), 861-878, 2009
542009
A spectral analytic comparison of trace-class data augmentation algorithms and their sandwich variants
K Khare, JP Hobert
532011
The system can't perform the operation now. Try again later.
Articles 1–20