[go: up one dir, main page]

Follow
Joshua C. Peterson
Joshua C. Peterson
Verified email at bu.edu
Title
Cited by
Cited by
Year
Human uncertainty makes classification more robust
JC Peterson, RM Battleday, TL Griffiths, O Russakovsky
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
4252019
Using large-scale experiments and machine learning to discover theories of human decision-making
JC Peterson, DD Bourgin, M Agrawal, D Reichman, TL Griffiths
Science 372 (6547), 1209-1214, 2021
3602021
Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations
JC Peterson, JT Abbott, TL Griffiths
Cognitive Science 42 (8), 2648-2669, 2018
2092018
Capturing human categorization of natural images by combining deep networks and cognitive models
RM Battleday, JC Peterson, TL Griffiths
Nature communications 11 (1), 5418, 2020
1612020
What makes an object memorable?
R Dubey, J Peterson, A Khosla, MH Yang, B Ghanem
Proceedings of the ieee international conference on computer vision, 1089-1097, 2015
1602015
Cognitive model priors for predicting human decisions
J Peterson, D Bourgin, D Reichman, S Russell, T Griffiths
International Conference on Machine Learning, 5133-5141, 2019
137*2019
Deep models of superficial face judgments
JC Peterson, S Uddenberg, TL Griffiths, A Todorov, JW Suchow
Proceedings of the National Academy of Sciences 119 (17), e2115228119, 2022
1172022
Predicting human decisions with behavioural theories and machine learning
O Plonsky, R Apel, E Ert, M Tennenholtz, D Bourgin, JC Peterson, ...
Nature Human Behaviour, 1-14, 2025
1082025
Adapting deep network features to capture psychological representations
JC Peterson, JT Abbott, TL Griffiths
arXiv preprint arXiv:1608.02164, 2016
1082016
A foundation model to predict and capture human cognition
M Binz, E Akata, M Bethge, F Brändle, F Callaway, J Coda-Forno, ...
Nature, 1-8, 2025
942025
Scaling up psychology via scientific regret minimization
M Agrawal, JC Peterson, TL Griffiths
Proceedings of the National Academy of Sciences 117 (16), 8825-8835, 2020
932020
Evaluating vector-space models of analogy
D Chen, JC Peterson, TL Griffiths
arXiv preprint arXiv:1705.04416, 2017
872017
Deep neural networks and how they apply to sequential education data
S Tang, JC Peterson, ZA Pardos
Proceedings of the third (2016) acm conference on learning@ scale, 321-324, 2016
742016
From convolutional neural networks to models of higher‐level cognition (and back again)
RM Battleday, JC Peterson, TL Griffiths
Annals of the New York Academy of Sciences 1505 (1), 55-78, 2021
552021
Centaur: a foundation model of human cognition
M Binz, E Akata, M Bethge, F Brändle, F Callaway, J Coda-Forno, ...
arXiv preprint arXiv:2410.20268, 2024
512024
Large language models assume people are more rational than we really are
R Liu, J Geng, JC Peterson, I Sucholutsky, TL Griffiths
arXiv preprint arXiv:2406.17055, 2024
462024
Parallelograms revisited: Exploring the limitations of vector space models for simple analogies
JC Peterson, D Chen, TL Griffiths
Cognition 205, 104440, 2020
462020
Extracting low‐dimensional psychological representations from convolutional neural networks
A Jha, JC Peterson, TL Griffiths
Cognitive science 47 (1), e13226, 2023
382023
End-to-end deep prototype and exemplar models for predicting human behavior
P Singh, JC Peterson, RM Battleday, TL Griffiths
arXiv preprint arXiv:2007.08723, 2020
332020
Modelling student behavior using granular large scale action data from a MOOC
S Tang, JC Peterson, ZA Pardos
arXiv preprint arXiv:1608.04789, 2016
332016
The system can't perform the operation now. Try again later.
Articles 1–20