[go: up one dir, main page]

Follow
Yusuke Tanaka
Yusuke Tanaka
NTT / NAIST / RIKEN
Verified email at hco.ntt.co.jp - Homepage
Title
Cited by
Cited by
Year
Deep mixture point processes: Spatio-temporal event prediction with rich contextual information
M Okawa, T Iwata, T Kurashima, Y Tanaka, H Toda, N Ueda
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
812019
Spatially aggregated Gaussian processes with multivariate areal outputs
Y Tanaka, T Tanaka, T Iwata, T Kurashima, M Okawa, Y Akagi, H Toda
Advances in Neural Information Processing Systems 32, 2019
372019
Inferring latent triggers of purchases with consideration of social effects and media advertisements
Y Tanaka, T Kurashima, Y Fujiwara, T Iwata, H Sawada
Proceedings of the ninth ACM international conference on web search and data …, 2016
282016
Dynamic hawkes processes for discovering time-evolving communities' states behind diffusion processes
M Okawa, T Iwata, Y Tanaka, H Toda, T Kurashima, H Kashima
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021
242021
Estimating latent people flow without tracking individuals.
Y Tanaka, T Iwata, T Kurashima, H Toda, N Ueda
IJCAI 18, 3556-3563, 2018
242018
Predicting traffic accidents with event recorder data
Y Takimoto, Y Tanaka, T Kurashima, S Yamamoto, M Okawa, H Toda
Proceedings of the 3rd ACM SIGSPATIAL international workshop on prediction …, 2019
232019
Refining coarse-grained spatial data using auxiliary spatial data sets with various granularities
Y Tanaka, T Iwata, T Tanaka, T Kurashima, M Okawa, H Toda
Proceedings of the AAAI Conference on Artificial Intelligence 33 (01), 5091-5099, 2019
202019
Few-shot learning for spatial regression via neural embedding-based Gaussian processes
T Iwata, Y Tanaka
Machine Learning 111 (4), 1239-1257, 2022
192022
Symplectic spectrum gaussian processes: Learning hamiltonians from noisy and sparse data
Y Tanaka, T Iwata
Advances in neural information processing systems 35, 20795-20808, 2022
182022
Meta-learning of physics-informed neural networks for efficiently solving newly given pdes
T Iwata, Y Tanaka, N Ueda
arXiv preprint arXiv:2310.13270, 2023
142023
Time-delayed collective flow diffusion models for inferring latent people flow from aggregated data at limited locations
Y Tanaka, T Iwata, T Kurashima, H Toda, N Ueda, T Tanaka
Artificial Intelligence 292, 103430, 2021
102021
Context-aware spatio-temporal event prediction via convolutional Hawkes processes
M Okawa, T Iwata, Y Tanaka, T Kurashima, H Toda, H Kashima
Machine Learning 111 (8), 2929-2950, 2022
92022
Understanding the Expressivity and Trainability of Fourier Neural Operator: A Mean-Field Perspective
T Koshizuka, M Fujisawa, Y Tanaka, I Sato
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024
62024
Few-shot learning for spatial regression
T Iwata, Y Tanaka
arXiv preprint arXiv:2010.04360, 2020
62020
Exact and efficient inference for collective flow diffusion model via minimum convex cost flow algorithm
Y Akagi, T Nishimura, Y Tanaka, T Kurashima, H Toda
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 3163-3170, 2020
62020
Robust naive Bayes combination of multiple classifications
N Ueda, Y Tanaka, A Fujino
The Impact of Applications on Mathematics: Proceedings of the Forum of …, 2014
62014
Probabilistic optimal transport based on collective graphical models
Y Akagi, Y Tanaka, T Iwata, T Kurashima, H Toda
arXiv preprint arXiv:2006.08866, 2020
32020
Meta-Learning under Task Shift
L Sun, Y Tanaka, T Iwata
Transactions on Machine Learning Research, 2024
22024
Machine Learning That Reproduces Physical Phenomena from Data
T Yusuke
NTT Technical Review 21 (10), 15-19, 2023
22023
Deep Mixture Point Processes
M Okawa, T Iwata, T Kurashima, Y Tanaka, H Toda, N Ueda, H Kashima
Transactions of the Japanese Society for Artificial Intelligence 36 (5), C-L37, 2021
22021
The system can't perform the operation now. Try again later.
Articles 1–20