[go: up one dir, main page]

Follow
Federico Barbero
Title
Cited by
Cited by
Year
On over-squashing in message passing neural networks: The impact of width, depth, and topology
F Di Giovanni, L Giusti, F Barbero, G Luise, P Lio, M Bronstein
International Conference on Machine Learning (ICML 2023), 2023
2512023
Scalable emulation of protein equilibrium ensembles with generative deep learning
S Lewis, T Hempel, J Jiménez Luna, M Gastegger, Y Xie, AYK Foong, ...
Cover of Science, 2024.12. 05.626885, 2024
180*2024
Transcending transcend: Revisiting malware classification with conformal evaluation
F Barbero, F Pendlebury, F Pierazzi, L Cavallaro
2022 IEEE Symposium on Security and Privacy, 1332-1349, 2022
170*2022
Round and Round We Go! What makes Rotary Positional Encodings useful?
F Barbero, A Vitvitskyi, C Perivolaropoulos, R Pascanu, P Veličković
International Conference on Learning Representations (ICLR 2025), 2025
642025
Sheaf neural networks with connection laplacians
F Barbero, C Bodnar, HS de Ocáriz Borde, M Bronstein, P Veličković, ...
Topological, Algebraic and Geometric Learning Workshops 2022, 28-36, 2022
612022
Locality-aware graph-rewiring in gnns
F Barbero, A Velingker, A Saberi, M Bronstein, F Di Giovanni
International Conference on Learning Representations (ICLR 2024), 2024
602024
Transformers need glasses! Information over-squashing in language tasks
F Barbero, A Banino, S Kapturowski, D Kumaran, JGM Araújo, A Vitvitskyi, ...
Advances in Neural Information Processing Systems (NeurIPS 2024), 2024
57*2024
Why do LLMs attend to the first token?
F Barbero, Á Arroyo, X Gu, C Perivolaropoulos, M Bronstein, P Veličković, ...
arXiv preprint arXiv:2504.02732, 2025
37*2025
Sheaf attention networks
F Barbero, C Bodnar, HS de Ocáriz Borde, P Lio
NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations, 2022
342022
Latent Graph Inference using Product Manifolds
HS de Ocáriz Borde, A Kazi, F Barbero, P Lio
International Conference on Learning Representations (ICLR 2023), 2023
312023
On vanishing gradients, over-smoothing, and over-squashing in gnns: Bridging recurrent and graph learning
Á Arroyo, A Gravina, B Gutteridge, F Barbero, C Gallicchio, X Dong, ...
arXiv preprint arXiv:2502.10818, 2025
242025
Bundle Neural Networks for message diffusion on graphs
J Bamberger, F Barbero, X Dong, M Bronstein
International Conference on Learning Representations (ICLR 2025) Spotlight, 2025
152025
Softmax is not Enough (for Sharp Size Generalisation)
P Veličković, C Perivolaropoulos, F Barbero, R Pascanu
arXiv preprint arXiv:2410.01104, 2024
14*2024
Enhancing the Expressivity of Temporal Graph Networks through Source-Target Identification
BA Tjandra, F Barbero, M Bronstein
NeurIPS 2024 Workshop on Symmetry and Geometry in Neural Representations, 2024
5*2024
Graph Neural Network Expressivity and Meta-Learning for Molecular Property Regression
HS de Ocáriz Borde, F Barbero
The First Learning on Graphs Conference, 2022
4*2022
Interpreting the Repeated Token Phenomenon in Large Language Models
I Yona, I Shumailov, J Hayes, F Barbero, Y Gandelsman
arXiv preprint arXiv:2503.08908, 2025
32025
Attention sinks and compression valleys in llms are two sides of the same coin
E Queipo-de-Llano, Á Arroyo, F Barbero, X Dong, M Bronstein, Y LeCun, ...
arXiv preprint arXiv:2510.06477, 2025
12025
Attention-based Sheaf Neural Networks
F Barbero
MPhil thesis. University of Cambridge, 2022
12022
Bridging Graph Neural Networks and Large Language Models: A Survey and Unified Perspective
Á Arroyo, F Barbero, H Blayney, M Bronstein, X Dong, P Liò, R Pascanu, ...
OpenReview, 2025
2025
Evaluating In Silico Creativity: An Expert Review of AI Chess Compositions
V Veeriah, F Barbero, M Chiam, X Feng, M Dennis, R Pachauri, T Tumiel, ...
arXiv preprint arXiv:2510.23772, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20