[go: up one dir, main page]

Follow
Yuval Moskovitch
Title
Cited by
Cited by
Year
Selective provenance for datalog programs using top-k queries
D Deutch, A Gilad, Y Moskovitch
Proceedings of the VLDB Endowment 8 (12), 1394-1405, 2015
532015
On Explaining Confounding Bias
B Youngmann, M Cafarella, Y Moskovitch, B Salimi
2023 IEEE 39th International Conference on Data Engineering (ICDE), 1846-1859, 2023
262023
A provenance framework for data-dependent process analysis
D Deutch, Y Moskovitch, V Tannen
Proceedings of the VLDB Endowment 7 (6), 457-468, 2014
232014
On detecting cherry-picked generalizations
Y Lin, B Youngmann, Y Moskovitch, HV Jagadish, T Milo
Proceedings of the VLDB Endowment 15 (1), 59-71, 2021
222021
On optimizing the trade-off between privacy and utility in data provenance
D Deutch, A Frankenthal, A Gilad, Y Moskovitch
Proceedings of the 2021 International Conference on Management of Data, 379-391, 2021
202021
Provenance-based analysis of data-centric processes
D Deutch, Y Moskovitch, V Tannen
The VLDB Journal 24 (4), 583-607, 2015
202015
DENOUNCER: detection of unfairness in classifiers
J Li, Y Moskovitch, HV Jagadish
Proceedings of the VLDB Endowment 14 (12), 2021
192021
Hypothetical reasoning via provenance abstraction
D Deutch, Y Moskovitch, N Rinetzky
Proceedings of the 2019 International Conference on Management of Data, 537-554, 2019
182019
Efficient provenance tracking for datalog using top-k queries
D Deutch, A Gilad, Y Moskovitch
The VLDB Journal 27, 245-269, 2018
172018
Query Refinement for Diversity Constraint Satisfaction
J Li, Y Moskovitch, J Stoyanovich, HV Jagadish
Proceedings of the VLDB Endowment 17 (2), 106-118, 2023
152023
Countata: dataset labeling using pattern counts
Y Moskovitch, HV Jagadish
Proceedings of the VLDB Endowment 13 (12), 2020
142020
Analyzing data-centric applications: Why, what-if, and how-to
P Bourhis, D Deutch, Y Moskovitch
2016 IEEE 32nd International Conference on Data Engineering (ICDE), 779-790, 2016
142016
selP: selective tracking and presentation of data provenance
D Deutch, A Gilad, Y Moskovitch
2015 IEEE 31st International Conference on Data Engineering, 1484-1487, 2015
122015
Detection of groups with biased representation in ranking
J Li, Y Moskovitch, HV Jagadish
2023 IEEE 39th International Conference on Data Engineering (ICDE), 2167-2179, 2023
102023
Equivalence-invariant algebraic provenance for hyperplane update queries
P Bourhis, D Deutch, Y Moskovitch
Proceedings of the 2020 ACM SIGMOD International Conference on Management of …, 2020
92020
Reliability at multiple stages in a data analysis pipeline
Y Moskovitch, HV Jagadish
Communications of the ACM 65 (11), 118-128, 2022
72022
PROPOLIS: provisioned analysis of data-centric processes
D Deutch, Y Moskovitch, V Tannen
Proceedings of the VLDB Endowment 6 (12), 1302-1305, 2013
72013
Query Refinement for Diverse Top-k Selection
FS Campbell, A Silberstein, J Stoyanovich, Y Moskovitch
Proceedings of the ACM on Management of Data 2 (3), 1-27, 2024
62024
NEXUS: On Explaining Confounding Bias
B Youngmann, M Cafarella, Y Moskovitch, B Salimi
Companion of the 2023 International Conference on Management of Data, 171-174, 2023
62023
Patterns count-based labels for datasets
Y Moskovitch, HV Jagadish
2021 IEEE 37th International Conference on Data Engineering (ICDE), 1961-1966, 2021
62021
The system can't perform the operation now. Try again later.
Articles 1–20