| Towards a rigorous science of interpretable machine learning F Doshi-Velez, B Kim arXiv preprint arXiv:1702.08608, 2017 | 8260 | 2017 |
| Do no harm: a roadmap for responsible machine learning for health care J Wiens, S Saria, M Sendak, M Ghassemi, VX Liu, F Doshi-Velez, K Jung, ... Nature medicine 25 (9), 1337-1340, 2019 | 1125 | 2019 |
| Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients A Ross, F Doshi-Velez Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 897 | 2018 |
| Right for the right reasons: Training differentiable models by constraining their explanations AS Ross, MC Hughes, F Doshi-Velez arXiv preprint arXiv:1703.03717, 2017 | 806 | 2017 |
| Accountability of AI under the law: The role of explanation F Doshi-Velez, M Kortz, R Budish, C Bavitz, S Gershman, D O'Brien, ... arXiv preprint arXiv:1711.01134, 2017 | 667 | 2017 |
| Decomposition of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning S Depeweg, JM Hernandez-Lobato, F Doshi-Velez, S Udluft International conference on machine learning, 1184-1193, 2018 | 630 | 2018 |
| Guidelines for reinforcement learning in healthcare O Gottesman, F Johansson, M Komorowski, A Faisal, D Sontag, ... Nature medicine 25 (1), 16-18, 2019 | 599 | 2019 |
| Comorbidity clusters in autism spectrum disorders: an electronic health record time-series analysis F Doshi-Velez, Y Ge, I Kohane Pediatrics 133 (1), e54-e63, 2014 | 575 | 2014 |
| The myth of generalisability in clinical research and machine learning in health care J Futoma, M Simons, T Panch, F Doshi-Velez, LA Celi The Lancet Digital Health 2 (9), e489-e492, 2020 | 450 | 2020 |
| A bayesian framework for learning rule sets for interpretable classification T Wang, C Rudin, F Doshi-Velez, Y Liu, E Klampfl, P MacNeille Journal of Machine Learning Research 18 (70), 1-37, 2017 | 391 | 2017 |
| Beyond sparsity: Tree regularization of deep models for interpretability M Wu, M Hughes, S Parbhoo, M Zazzi, V Roth, F Doshi-Velez Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 371 | 2018 |
| How machine-learning recommendations influence clinician treatment selections: the example of antidepressant selection M Jacobs, MF Pradier, TH McCoy Jr, RH Perlis, F Doshi-Velez, KZ Gajos Translational psychiatry 11 (1), 108, 2021 | 347 | 2021 |
| Explainable reinforcement learning via reward decomposition Z Juozapaitis, A Koul, A Fern, M Erwig, F Doshi-Velez IJCAI/ECAI Workshop on explainable artificial intelligence, 2019 | 320 | 2019 |
| Unfolding physiological state: Mortality modelling in intensive care units M Ghassemi, T Naumann, F Doshi-Velez, N Brimmer, R Joshi, ... Proceedings of the 20th ACM SIGKDD international conference on Knowledge …, 2014 | 315 | 2014 |
| Gathering strength, gathering storms: The one hundred year study on artificial intelligence (AI100) 2021 study panel report ML Littman, I Ajunwa, G Berger, C Boutilier, M Currie, F Doshi-Velez, ... arXiv preprint arXiv:2210.15767, 2022 | 307 | 2022 |
| Considerations for evaluation and generalization in interpretable machine learning F Doshi-Velez, B Kim Explainable and interpretable models in computer vision and machine learning …, 2018 | 301 | 2018 |
| An evaluation of the human-interpretability of explanation I Lage, E Chen, J He, M Narayanan, B Kim, S Gershman, F Doshi-Velez arXiv preprint arXiv:1902.00006, 2019 | 289 | 2019 |
| How do humans understand explanations from machine learning systems? an evaluation of the human-interpretability of explanation M Narayanan, E Chen, J He, B Kim, S Gershman, F Doshi-Velez arXiv preprint arXiv:1802.00682, 2018 | 282 | 2018 |
| Ethical and regulatory challenges of large language models in medicine JCL Ong, SYH Chang, W William, AJ Butte, NH Shah, LST Chew, N Liu, ... The Lancet Digital Health 6 (6), e428-e432, 2024 | 256 | 2024 |
| Learning and policy search in stochastic dynamical systems with bayesian neural networks S Depeweg, JM Hernández-Lobato, F Doshi-Velez, S Udluft arXiv preprint arXiv:1605.07127, 2016 | 236 | 2016 |