[go: up one dir, main page]

Follow
James Requeima
James Requeima
Verified email at cs.toronto.edu - Homepage
Title
Cited by
Cited by
Year
Fast and flexible multi-task classification using conditional neural adaptive processes
J Requeima, J Gordon, J Bronskill, S Nowozin, RE Turner
Advances in Neural Information Processing Systems, 7959-7970, 2019
3302019
Parallel and distributed Thompson sampling for large-scale accelerated exploration of chemical space
JM Hernández-Lobato, J Requeima, EO Pyzer-Knapp, A Aspuru-Guzik
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
2622017
Convolutional Conditional Neural Processes
J Gordon, W Bruinsma, AYK Foong, J Requeima, Y Dubois, RE Turner
2282020
Tasknorm: Rethinking batch normalization for meta-learning
J Bronskill, J Gordon, J Requeima, S Nowozin, R Turner
International Conference on Machine Learning, 1153-1164, 2020
1332020
Meta-learning stationary stochastic process prediction with convolutional neural processes
A Foong, W Bruinsma, J Gordon, Y Dubois, J Requeima, R Turner
Advances in Neural Information Processing Systems 33, 2020
962020
End-to-end data-driven weather prediction
A Allen, S Markou, W Tebbutt, J Requeima, WP Bruinsma, TR Andersson, ...
Nature 641 (8065), 1172-1179, 2025
76*2025
Mapping Gaussian Process Priors to Bayesian Neural Networks
D Flam-Shepherd, J Requeima, D Duvenaud
NIPS Bayesian deep learning workshop, 2017
702017
The gaussian process autoregressive regression model (gpar)
J Requeima, W Tebbutt, W Bruinsma, RE Turner
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
592019
Llm processes: Numerical predictive distributions conditioned on natural language
J Requeima, J Bronskill, D Choi, R Turner, DK Duvenaud
Advances in Neural Information Processing Systems 37, 109609-109671, 2024
582024
The Gaussian neural process
WP Bruinsma, J Requeima, AYK Foong, J Gordon, RE Turner
arXiv preprint arXiv:2101.03606, 2021
492021
Context is key: A benchmark for forecasting with essential textual information
AR Williams, A Ashok, É Marcotte, V Zantedeschi, J Subramanian, ...
arXiv preprint arXiv:2410.18959, 2024
452024
Practical conditional neural processes via tractable dependent predictions
S Markou, J Requeima, WP Bruinsma, A Vaughan, RE Turner
arXiv preprint arXiv:2203.08775, 2022
352022
Environmental sensor placement with convolutional Gaussian neural processes
TR Andersson, WP Bruinsma, S Markou, J Requeima, A Coca-Castro, ...
Environmental Data Science 2, e32, 2023
262023
Characterizing and Warping the Function Space of Bayesian Neural Networks
D Flam-Shepherd, J Requeima, D Duvenaud
NeurIPS Workshop on Bayesian Deep Learning, 2018
162018
Meta-optimization of optimal power flow
M Jamei, L Mones, A Robson, L White, J Requeima, C Ududec
ICML Workshop on Climate Change: How Can AI Help, 2019
152019
Efficient gaussian neural processes for regression
S Markou, J Requeima, W Bruinsma, R Turner
arXiv preprint arXiv:2108.09676, 2021
142021
A meta-learning approach to Bayesian causal discovery
A Dhir, M Ashman, J Requeima, M van der Wilk
arXiv preprint arXiv:2412.16577, 2024
102024
Translation equivariant transformer neural processes
M Ashman, C Diaconu, J Kim, L Sivaraya, S Markou, J Requeima, ...
arXiv preprint arXiv:2406.12409, 2024
82024
Challenges and pitfalls of Bayesian unlearning
A Rawat, J Requeima, W Bruinsma, R Turner
arXiv preprint arXiv:2207.03227, 2022
72022
AI for operational methane emitter monitoring from space
A Vaughan, G Mateo-Garcia, I Irakulis-Loitxate, M Watine, ...
arXiv preprint arXiv:2408.04745, 2024
52024
The system can't perform the operation now. Try again later.
Articles 1–20