[go: up one dir, main page]

Follow
Bilal Piot
Bilal Piot
Google Deepmind
Verified email at google.com
Title
Cited by
Cited by
Year
Bootstrap your own latent: A new approach to self-supervised learning
JB Grill, F Strub, F Altché, C Tallec, PH Richemond, E Buchatskaya, ...
arXiv preprint arXiv:2006.07733, 2020
97882020
Rainbow: Combining improvements in deep reinforcement learning
M Hessel, J Modayil, H Van Hasselt, T Schaul, G Ostrovski, W Dabney, ...
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
34992018
Gemma 2: Improving open language models at a practical size
G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ...
arXiv preprint arXiv:2408.00118, 2024
16912024
Deep q-learning from demonstrations
T Hester, M Vecerik, O Pietquin, M Lanctot, T Schaul, B Piot, D Horgan, ...
Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018
15832018
Noisy Networks for Exploration
M Fortunato, MG Azar, B Piot, J Menick, I Osband, A Graves, V Mnih, ...
arXiv preprint arXiv:1706.10295 2018, 2017
1437*2017
Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities
G Comanici, E Bieber, M Schaekermann, I Pasupat, N Sachdeva, I Dhillon, ...
arXiv preprint arXiv:2507.06261, 2025
13372025
Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards
M Vecerik, T Hester, J Scholz, F Wang, O Pietquin, B Piot, N Heess, ...
arXiv preprint arXiv:1707.08817, 2017
10082017
Agent57: Outperforming the atari human benchmark
AP Badia, B Piot, S Kapturowski, P Sprechmann, A Vitvitskyi, ZD Guo, ...
International conference on machine learning, 507-517, 2020
8602020
A general theoretical paradigm to understand learning from human preferences
MG Azar, ZD Guo, B Piot, R Munos, M Rowland, M Valko, D Calandriello
International Conference on Artificial Intelligence and Statistics, 4447-4455, 2024
8402024
Gemma 3 technical report
G Team, A Kamath, J Ferret, S Pathak, N Vieillard, R Merhej, S Perrin, ...
arXiv preprint arXiv:2503.19786, 2025
8182025
Never give up: Learning directed exploration strategies
AP Badia, P Sprechmann, A Vitvitskyi, D Guo, B Piot, S Kapturowski, ...
arXiv preprint arXiv:2002.06038, 2020
4832020
Mastering the game of Stratego with model-free multiagent reinforcement learning
J Perolat, B De Vylder, D Hennes, E Tarassov, F Strub, V de Boer, ...
Science 378 (6623), 990-996, 2022
3742022
Acme: A research framework for distributed reinforcement learning
MW Hoffman, B Shahriari, J Aslanides, G Barth-Maron, N Momchev, ...
arXiv preprint arXiv:2006.00979, 2020
3052020
Direct language model alignment from online ai feedback
S Guo, B Zhang, T Liu, T Liu, M Khalman, F Llinares, A Rame, T Mesnard, ...
arXiv preprint arXiv:2402.04792, 2024
2202024
Nash learning from human feedback
R Munos, M Valko, D Calandriello, MG Azar, M Rowland, ZD Guo, Y Tang, ...
Forty-first International Conference on Machine Learning, 2024
2192024
Learning from demonstrations for real world reinforcement learning
T Hester, M Vecerik, O Pietquin, M Lanctot, T Schaul, B Piot, A Sendonaris, ...
arXiv preprint arXiv:1704.03732, 2017
1942017
Bootstrap latent-predictive representations for multitask reinforcement learning
ZD Guo, BA Pires, B Piot, JB Grill, F Altché, R Munos, MG Azar
International Conference on Machine Learning, 3875-3886, 2020
1862020
Generalized preference optimization: A unified approach to offline alignment
Y Tang, ZD Guo, Z Zheng, D Calandriello, R Munos, M Rowland, ...
arXiv preprint arXiv:2402.05749, 2024
1582024
Approximate dynamic programming for two-player zero-sum Markov games
J Perolat, B Scherrer, B Piot, O Pietquin
International Conference on Machine Learning, 1321-1329, 2015
1542015
Inverse reinforcement learning through structured classification
E Klein, M Geist, B Piot, O Pietquin
Advances in neural information processing systems 25, 2012
1442012
The system can't perform the operation now. Try again later.
Articles 1–20