| Palm: Scaling language modeling with pathways A Chowdhery, S Narang, J Devlin, M Bosma, G Mishra, A Roberts, ... Journal of Machine Learning Research 24 (240), 1-113, 2023 | 8328 | 2023 |
| Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ... arXiv preprint arXiv:2312.11805, 2023 | 6992 | 2023 |
| Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ... arXiv preprint arXiv:2403.05530, 2024 | 3439 | 2024 |
| Gpipe: Efficient training of giant neural networks using pipeline parallelism Y Huang, Y Cheng, A Bapna, O Firat, D Chen, M Chen, HJ Lee, J Ngiam, ... Advances in neural information processing systems 32, 2019 | 2400 | 2019 |
| Palm 2 technical report R Anil, AM Dai, O Firat, M Johnson, D Lepikhin, A Passos, S Shakeri, ... arXiv preprint arXiv:2305.10403, 2023 | 2252 | 2023 |
| Gshard: Scaling giant models with conditional computation and automatic sharding D Lepikhin, HJ Lee, Y Xu, D Chen, O Firat, Y Huang, M Krikun, N Shazeer, ... arXiv preprint arXiv:2006.16668, 2020 | 1904 | 2020 |
| Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities G Comanici, E Bieber, M Schaekermann, I Pasupat, N Sachdeva, I Dhillon, ... arXiv preprint arXiv:2507.06261, 2025 | 1337 | 2025 |
| Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation J Hu, S Ruder, A Siddhant, G Neubig, O Firat, M Johnson International conference on machine learning, 4411-4421, 2020 | 1168 | 2020 |
| Glam: Efficient scaling of language models with mixture-of-experts N Du, Y Huang, AM Dai, S Tong, D Lepikhin, Y Xu, M Krikun, Y Zhou, ... International conference on machine learning, 5547-5569, 2022 | 1075 | 2022 |
| Theano: A Python framework for fast computation of mathematical expressions R Al-Rfou, G Alain, A Almahairi, C Angermueller, D Bahdanau, N Ballas, ... arXiv preprint arXiv:1605.02688, 2016 | 1023 | 2016 |
| Multi-way, multilingual neural machine translation with a shared attention mechanism O Firat, K Cho, Y Bengio arXiv preprint arXiv:1601.01073, 2016 | 752 | 2016 |
| Massively multilingual neural machine translation R Aharoni, M Johnson, O Firat arXiv preprint arXiv:1903.00089, 2019 | 696 | 2019 |
| On using monolingual corpora in neural machine translation C Gulcehre, O Firat, K Xu, K Cho, L Barrault, HC Lin, F Bougares, ... arXiv preprint arXiv:1503.03535, 2015 | 693 | 2015 |
| The best of both worlds: Combining recent advances in neural machine translation MX Chen, O Firat, A Bapna, M Johnson, W Macherey, G Foster, L Jones, ... Proceedings of the 56th annual meeting of the association for computational …, 2018 | 585 | 2018 |
| Simple, scalable adaptation for neural machine translation A Bapna, O Firat Proceedings of the 2019 conference on empirical methods in natural language …, 2019 | 532 | 2019 |
| Massively multilingual neural machine translation in the wild: Findings and challenges N Arivazhagan, A Bapna, O Firat, D Lepikhin, M Johnson, M Krikun, ... arXiv preprint arXiv:1907.05019, 2019 | 487 | 2019 |
| Nematus: a toolkit for neural machine translation R Sennrich, O Firat, K Cho, A Birch, B Haddow, J Hitschler, ... Proceedings of the Software Demonstrations of the 15th Conference of the …, 2017 | 469 | 2017 |
| Reinforced self-training (rest) for language modeling C Gulcehre, TL Paine, S Srinivasan, K Konyushkova, L Weerts, A Sharma, ... arXiv preprint arXiv:2308.08998, 2023 | 371 | 2023 |
| Zero-resource translation with multi-lingual neural machine translation O Firat, B Sankaran, Y Al-Onaizan, FTY Vural, K Cho arXiv preprint arXiv:1606.04164, 2016 | 294 | 2016 |
| When scaling meets llm finetuning: The effect of data, model and finetuning method B Zhang, Z Liu, C Cherry, O Firat arXiv preprint arXiv:2402.17193, 2024 | 269 | 2024 |