[go: up one dir, main page]

Follow
Stefan Hinterstoisser
Stefan Hinterstoisser
Industrial Perception
Verified email at industrial-perception.com
Title
Cited by
Cited by
Year
Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes
S Hinterstoisser, V Lepetit, S Ilic, S Holzer, G Bradski, K Konolige, ...
Asian conference on computer vision, 548-562, 2012
18952012
Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes
S Hinterstoisser, S Holzer, C Cagniart, S Ilic, K Konolige, N Navab, ...
2011 international conference on computer vision, 858-865, 2011
9272011
Gradient response maps for real-time detection of textureless objects
S Hinterstoisser, C Cagniart, S Ilic, P Sturm, N Navab, P Fua, V Lepetit
IEEE transactions on pattern analysis and machine intelligence 34 (5), 876-888, 2011
8432011
On pre-trained image features and synthetic images for deep learning
S Hinterstoisser, V Lepetit, P Wohlhart, K Konolige
Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 0-0, 2018
3572018
Dominant orientation templates for real-time detection of texture-less objects
S Hinterstoisser, V Lepetit, S Ilic, P Fua, N Navab
2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010
3372010
Detection and reconstruction of an environment to facilitate robotic interaction with the environment
K Konolige, E Rublee, S Hinterstoisser, T Straszheim, G Bradski, ...
US Patent 9,102,055, 2015
3132015
Object pickup strategies for a robotic device
G Bradski, K Konolige, E Rublee, T Straszheim, H Strasdat, ...
US Patent 9,987,746, 2018
2652018
Going further with point pair features
S Hinterstoisser, V Lepetit, N Rajkumar, K Konolige
European conference on computer vision, 834-848, 2016
2552016
An annotation saved is an annotation earned: Using fully synthetic training for object detection
S Hinterstoisser, O Pauly, H Heibel, M Martina, M Bokeloh
Proceedings of the IEEE/CVF international conference on computer vision …, 2019
1822019
Multi-task domain adaptation for deep learning of instance grasping from simulation
K Fang, Y Bai, S Hinterstoisser, S Savarese, M Kalakrishnan
2018 IEEE International Conference on Robotics and Automation (ICRA), 3516-3523, 2018
1442018
An industrial augmented reality solution for discrepancy check
P Georgel, P Schroeder, S Benhimane, S Hinterstoisser, M Appel, ...
2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality …, 2007
922007
Continuous updating of plan for robotic object manipulation based on received sensor data
G Bradski, K Konolige, E Rublee, T Straszheim, H Strasdat, ...
US Patent 9,238,304, 2016
872016
Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds
BK Seo, H Park, JI Park, S Hinterstoisser, S Ilic
IEEE transactions on visualization and computer graphics 20 (1), 99-110, 2013
822013
Rapid selection of reliable templates for visual tracking
N Alt, S Hinterstoisser, N Navab
2010 IEEE Computer Society Conference on Computer Vision and Pattern …, 2010
672010
Learning real-time perspective patch rectification
S Hinterstoisser, V Lepetit, S Benhimane, P Fua, N Navab
International Journal of Computer Vision 91 (1), 107-130, 2011
652011
N3m: Natural 3d markers for real-time object detection and pose estimation
S Hinterstoisser, S Benhimane, N Navab
2007 IEEE 11th International Conference on Computer Vision, 1-7, 2007
642007
Online learning of patch perspective rectification for efficient object detection
S Hinterstoisser, S Benhimane, N Navab, P Fua, V Lepetit
2008 IEEE Conference on Computer Vision and Pattern Recognition, 1-8, 2008
622008
Object segmentation based on detected object-specific visual cues
S Hinterstoisser, K Konolige
US Patent 9,327,406, 2016
612016
Machine learning methods and apparatus for robotic manipulation and that utilize multi-task domain adaptation
Y Bai, K Fang, S Hinterstoisser, M Kalakrishnan
US Patent 10,773,382, 2020
532020
Distance transform templates for object detection and pose estimation
S Holzer, S Hinterstoisser, S Ilic, N Navab
2009 IEEE Conference on Computer Vision and Pattern Recognition, 1177-1184, 2009
532009
The system can't perform the operation now. Try again later.
Articles 1–20