| Going deeper with convolutions C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ... Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 72461 | 2015 |
| Batch normalization: Accelerating deep network training by reducing internal covariate shift S Ioffe arXiv preprint arXiv:1502.03167, 2015 | 65302 | 2015 |
| Ssd: Single shot multibox detector W Liu, D Anguelov, D Erhan, C Szegedy, S Reed, CY Fu, AC Berg European conference on computer vision, 21-37, 2016 | 52609 | 2016 |
| Rethinking the inception architecture for computer vision C Szegedy, V Vanhoucke, S Ioffe, J Shlens, Z Wojna Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 43005 | 2016 |
| Explaining and harnessing adversarial examples IJ Goodfellow, J Shlens, C Szegedy arXiv preprint arXiv:1412.6572, 2014 | 28515 | 2014 |
| Intriguing properties of neural networks C Szegedy, W Zaremba, I Sutskever, J Bruna, D Erhan, I Goodfellow, ... arXiv preprint arXiv:1312.6199, 2013 | 21261 | 2013 |
| Inception-v4, inception-resnet and the impact of residual connections on learning C Szegedy, S Ioffe, V Vanhoucke, A Alemi Proceedings of the AAAI conference on artificial intelligence 31 (1), 2017 | 20751 | 2017 |
| Deeppose: Human pose estimation via deep neural networks A Toshev, C Szegedy Proceedings of the IEEE conference on computer vision and pattern …, 2014 | 4552 | 2014 |
| Deep neural networks for object detection C Szegedy, A Toshev, D Erhan Advances in neural information processing systems 26, 2013 | 2254 | 2013 |
| Scalable object detection using deep neural networks D Erhan, C Szegedy, A Toshev, D Anguelov Proceedings of the IEEE conference on computer vision and pattern …, 2014 | 1693 | 2014 |
| Training deep neural networks on noisy labels with bootstrapping S Reed, H Lee, D Anguelov, C Szegedy, D Erhan, A Rabinovich arXiv preprint arXiv:1412.6596, 2014 | 1347 | 2014 |
| Scalable, high-quality object detection C Szegedy, S Reed, D Erhan, D Anguelov, S Ioffe arXiv preprint arXiv:1412.1441, 2014 | 585 | 2014 |
| Memorizing transformers Y Wu, MN Rabe, DL Hutchins, C Szegedy arXiv preprint arXiv:2203.08913, 2022 | 399 | 2022 |
| Deepmath-deep sequence models for premise selection G Irving, C Szegedy, AA Alemi, N Eén, F Chollet, J Urban Advances in neural information processing systems 29, 2016 | 333* | 2016 |
| Autoformalization with large language models Y Wu, AQ Jiang, W Li, M Rabe, C Staats, M Jamnik, C Szegedy Advances in neural information processing systems 35, 32353-32368, 2022 | 309 | 2022 |
| Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv 2016 C Szegedy, S Ioffe, V Vanhoucke, A Alemi arXiv preprint arXiv:1602.07261, 2023 | 293 | 2023 |
| Going deeper with convolutions. 2015 IEEE Conf C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, ... Comput. Vis. Pattern Recognit 7, 1-9, 2015 | 288 | 2015 |
| Deep network guided proof search S Loos, G Irving, C Szegedy, C Kaliszyk arXiv preprint arXiv:1701.06972, 2017 | 222 | 2017 |
| Holist: An environment for machine learning of higher order logic theorem proving K Bansal, S Loos, M Rabe, C Szegedy, S Wilcox International Conference on Machine Learning, 454-463, 2019 | 221 | 2019 |
| Object detection using deep neural networks C Szegedy, D Erhan, AT Toshev US Patent 9,275,308, 2016 | 190 | 2016 |