| Informed machine learning–a taxonomy and survey of integrating prior knowledge into learning systems L Von Rueden, S Mayer, K Beckh, B Georgiev, S Giesselbach, R Heese, ... IEEE Transactions on Knowledge and Data Engineering 35 (1), 614-633, 2021 | 1230 | 2021 |
| Challenges and opportunities in quantum optimization A Abbas, A Ambainis, B Augustino, A Bärtschi, H Buhrman, C Coffrin, ... Nature Reviews Physics, 1-18, 2024 | 265 | 2024 |
| Quantum optimization: Potential, challenges, and the path forward A Abbas, A Ambainis, B Augustino, A Bärtschi, H Buhrman, C Coffrin, ... arXiv preprint arXiv:2312.02279, 2023 | 136 | 2023 |
| Feature selection on quantum computers S Mücke, R Heese, S Müller, M Wolter, N Piatkowski Quantum Machine Intelligence 5 (1), 11, 2023 | 69 | 2023 |
| Wavelet-packets for deepfake image analysis and detection M Wolter, F Blanke, R Heese, J Garcke Machine Learning 111 (11), 4295-4327, 2022 | 62 | 2022 |
| Explaining quantum circuits with shapley values: Towards explainable quantum machine learning R Heese, T Gerlach, S Mücke, S Müller, M Jakobs, N Piatkowski Quantum Machine Intelligence 7 (1), 1-33, 2025 | 37 | 2025 |
| Optimized data exploration applied to the simulation of a chemical process R Heese, M Walczak, T Seidel, N Asprion, M Bortz Computers & Chemical Engineering 124, 326-342, 2019 | 27 | 2019 |
| Representation of binary classification trees with binary features by quantum circuits R Heese, P Bickert, AE Niederle Quantum 6, 676, 2022 | 26 | 2022 |
| Quantum circuit evolution on NISQ devices L Franken, B Georgiev, S Mucke, M Wolter, R Heese, C Bauckhage, ... 2022 IEEE congress on evolutionary computation (CEC), 1-8, 2022 | 25 | 2022 |
| Quantum optimization: potential, challenges, and the path forward. 2023 A Abbas, A Ambainis, B Augustino, A Bärtschi, H Buhrman, C Coffrin, ... arXiv preprint arXiv:2312.02279, 2023 | 24 | 2023 |
| Using machine learning models to explore the solution space of large nonlinear systems underlying flowsheet simulations with constraints PO Ludl, R Heese, J Höller, N Asprion, M Bortz Frontiers of Chemical Science and Engineering 16 (2), 183-197, 2022 | 22 | 2022 |
| An optimization case study for solving a transport robot scheduling problem on quantum-hybrid and quantum-inspired hardware D Leib, T Seidel, S Jäger, R Heese, C Jones, A Awasthi, A Niederle, ... Scientific Reports 13 (1), 18743, 2023 | 19 | 2023 |
| Quantum Optimization Benchmark Library--The Intractable Decathlon T Koch, DEB Neira, Y Chen, G Cortiana, DJ Egger, R Heese, NN Hegade, ... arXiv preprint arXiv:2504.03832, 2025 | 18 | 2025 |
| Informed machine learning-a taxonomy and survey of integrating knowledge into learning systems. arXiv L Von Rueden, S Mayer, K Beckh, B Georgiev, S Giesselbach, R Heese, ... Machine Learning, 2019 | 17 | 2019 |
| On the effects of biased quantum random numbers on the initialization of artificial neural networks R Heese, M Wolter, S Mücke, L Franken, N Piatkowski Machine Learning 113 (3), 1189-1217, 2024 | 15 | 2024 |
| Quantum computing for discrete optimization: A highlight of three technologies A Bochkarev, R Heese, S Jäger, P Schiewe, A Schöbel European Journal of Operational Research, 2025 | 14 | 2025 |
| The good, the bad and the ugly: Augmenting a black-box model with expert knowledge R Heese, M Walczak, L Morand, D Helm, M Bortz International Conference on Artificial Neural Networks, 391-395, 2019 | 14 | 2019 |
| Gradient-free quantum optimization on NISQ devices L Franken, B Georgiev, S Muecke, M Wolter, N Piatkowski, C Bauckhage arXiv preprint arXiv:2012.13453, 2020 | 12 | 2020 |
| Multiplicities in thermodynamic activity coefficients J Werner, T Seidel, R Jafar, R Heese, H Hasse, M Bortz AIChE Journal 69 (12), e18251, 2023 | 9 | 2023 |
| The big picture of neurodegeneration: a meta study to extract the essential evidence on neurodegenerative diseases in a network-based approach N Ruffini, S Klingenberg, R Heese, S Schweiger, S Gerber Frontiers in aging neuroscience 14, 866886, 2022 | 8 | 2022 |