[go: up one dir, main page]

Follow
David Sondak
David Sondak
Dassault Systemes; Simulia Inc
Verified email at 3ds.com - Homepage
Title
Cited by
Cited by
Year
Hamiltonian neural networks for solving equations of motion
M Mattheakis, D Sondak, AS Dogra, P Protopapas
Physical Review E 105 (6), 065305, 2022
1812022
Neurodiffeq: A python package for solving differential equations with neural networks
F Chen, D Sondak, P Protopapas, M Mattheakis, S Liu, D Agarwal, ...
Journal of Open Source Software 5 (46), 1931, 2020
1812020
Physical symmetries embedded in neural networks
M Mattheakis, P Protopapas, D Sondak, M Di Giovanni, E Kaxiras
arXiv preprint arXiv:1904.08991, 2019
1132019
Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
S Desai, M Mattheakis, D Sondak, P Protopapas, S Roberts
arXiv preprint arXiv:2107.08024, 2021
912021
Neural network models for the anisotropic Reynolds stress tensor in turbulent channel flow
R Fang, D Sondak, P Protopapas, S Succi
Journal of Turbulence 21 (9-10), 525-543, 2020
762020
Solving differential equations using neural network solution bundles
C Flamant, P Protopapas, D Sondak
arXiv preprint arXiv:2006.14372, 2020
522020
Optimal heat transport solutions for Rayleigh–Bénard convection
D Sondak, LM Smith, F Waleffe
Journal of Fluid Mechanics 784, 565-595, 2015
502015
Deep learning for turbulent channel flow
R Fang, D Sondak, P Protopapas, S Succi
arXiv preprint arXiv:1812.02241, 2018
282018
A residual based eddy viscosity model for the large eddy simulation of turbulent flows
AA Oberai, J Liu, D Sondak, TJR Hughes
Computer Methods in Applied Mechanics and Engineering 282, 54-70, 2014
282014
A new class of finite element variational multiscale turbulence models for incompressible magnetohydrodynamics
D Sondak, JN Shadid, AA Oberai, RP Pawlowski, EC Cyr, TM Smith
Journal of Computational Physics 295, 596-616, 2015
262015
Can phoretic particles swim in two dimensions?
D Sondak, C Hawley, S Heng, R Vinsonhaler, E Lauga, JL Thiffeault
Physical Review E 94 (6), 062606, 2016
232016
Convolutional neural network models and interpretability for the anisotropic reynolds stress tensor in turbulent one-dimensional flows
H Sáez de Ocáriz Borde, D Sondak, P Protopapas
Journal of Turbulence 23 (1-2), 1-28, 2022
222022
Coherent solutions and transition to turbulence in two-dimensional Rayleigh-Bénard convection
P Kooloth, D Sondak, LM Smith
Physical Review Fluids 6 (1), 013501, 2021
182021
Finding multiple solutions of odes with neural networks
M Di Giovanni, D Sondak, P Protopapas, M Brambilla
CEUR WORKSHOP PROCEEDINGS 2587, 1-7, 2020
142020
Deqgan: Learning the loss function for pinns with generative adversarial networks
B Bullwinkel, D Randle, P Protopapas, D Sondak
arXiv preprint arXiv:2209.07081, 2022
132022
Learning a reduced basis of dynamical systems using an autoencoder
D Sondak, P Protopapas
Physical Review E 104 (3), 034202, 2021
132021
Large eddy simulation models for incompressible magnetohydrodynamics derived from the variational multiscale formulation
D Sondak, AA Oberai
Physics of Plasmas 19 (10), 2012
13*2012
Application of the variational Germano identity to the variational multiscale formulation
AA Oberai, D Sondak
International journal for numerical methods in biomedical engineering 27 (2 …, 2011
122011
Extending a physics-informed machine-learning network for superresolution studies of Rayleigh–Bénard convection
DM Salim, B Burkhart, D Sondak
The Astrophysical Journal 964 (1), 2, 2024
102024
High Rayleigh number variational multiscale large eddy simulations of Rayleigh-Bénard convection
D Sondak, TM Smith, RP Pawlowski, S Conde, JN Shadid
Mechanics Research Communications 112, 103614, 2021
82021
The system can't perform the operation now. Try again later.
Articles 1–20