[go: up one dir, main page]

Follow
Santiago Miret
Santiago Miret
Lila Sciences
Verified email at lila.ai
Title
Cited by
Cited by
Year
Collaborative evolutionary reinforcement learning
S Khadka, S Majumdar, T Nassar, Z Dwiel, E Tumer, S Miret, Y Liu, ...
International conference on machine learning, 3341-3350, 2019
1792019
Protst: Multi-modality learning of protein sequences and biomedical texts
M Xu, X Yuan, S Miret, J Tang
International Conference on Machine Learning, 38749-38767, 2023
1752023
A hitchhiker's guide to geometric gnns for 3d atomic systems
A Duval, SV Mathis, CK Joshi, V Schmidt, S Miret, FD Malliaros, T Cohen, ...
arXiv preprint arXiv:2312.07511, 2023
1332023
From text to insight: large language models for chemical data extraction
M Schilling-Wilhelmi, M Ríos-García, S Shabih, MV Gil, S Miret, CT Koch, ...
Chemical Society Reviews, 2025
1242025
Multi-objective gflownets
M Jain, SC Raparthy, A Hernández-Garcıa, J Rector-Brooks, Y Bengio, ...
International conference on machine learning, 14631-14653, 2023
1152023
Faenet: Frame averaging equivariant gnn for materials modeling
AA Duval, V Schmidt, A Hernández-Garcıa, S Miret, FD Malliaros, ...
International Conference on Machine Learning, 9013-9033, 2023
1072023
Evolutionary reinforcement learning for sample-efficient multiagent coordination
S Majumdar, S Khadka, S Miret, S McAleer, K Tumer
International Conference on Machine Learning, 6651-6660, 2020
902020
Group SELFIES: a robust fragment-based molecular string representation
AH Cheng, A Cai, S Miret, G Malkomes, M Phielipp, A Aspuru-Guzik
Digital Discovery 2 (3), 748-758, 2023
802023
Are large language models superhuman chemists?
A Mirza, N Alampara, S Kunchapu, M Ríos-García, B Emoekabu, ...
arXiv preprint arXiv:2404.01475, 2024
792024
ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories
M Sim, MG Vakili, F Strieth-Kalthoff, H Hao, RJ Hickman, S Miret, ...
Matter 7 (9), 2959-2977, 2024
782024
Are llms ready for real-world materials discovery?
S Miret, NM Krishnan
arXiv preprint arXiv:2402.05200, 2024
682024
MatSci-NLP: Evaluating scientific language models on materials science language tasks using text-to-schema modeling
Y Song, S Miret, B Liu
arXiv preprint arXiv:2305.08264, 2023
572023
A framework for evaluating the chemical knowledge and reasoning abilities of large language models against the expertise of chemists
A Mirza, N Alampara, S Kunchapu, M Ríos-García, B Emoekabu, ...
Nature Chemistry, 1-8, 2025
562025
Honeycomb: A flexible llm-based agent system for materials science
H Zhang, Y Song, Z Hou, S Miret, B Liu
arXiv preprint arXiv:2409.00135, 2024
522024
EGraFFBench: evaluation of equivariant graph neural network force fields for atomistic simulations
V Bihani, S Mannan, U Pratiush, T Du, Z Chen, S Miret, M Micoulaut, ...
Digital Discovery 3 (4), 759-768, 2024
372024
Can retriever-augmented language models reason? the blame game between the retriever and the language model
P BehnamGhader, S Miret, S Reddy
Findings of the Association for Computational Linguistics: EMNLP 2023, 15492 …, 2023
372023
HoneyBee: Progressive instruction finetuning of large language models for materials science
Y Song, S Miret, H Zhang, B Liu
arXiv preprint arXiv:2310.08511, 2023
372023
MatText: Do language models need more than text & scale for materials modeling?
N Alampara, S Miret, KM Jablonka
arXiv preprint arXiv:2406.17295, 2024
362024
Matsciml: A broad, multi-task benchmark for solid-state materials modeling
KLK Lee, C Gonzales, M Nassar, M Spellings, M Galkin, S Miret
arXiv preprint arXiv:2309.05934, 2023
302023
Towards equilibrium molecular conformation generation with GFlowNets
A Volokhova, M Koziarski, A Hernández-García, CH Liu, S Miret, P Lemos, ...
Digital Discovery 3 (5), 1038-1047, 2024
242024
The system can't perform the operation now. Try again later.
Articles 1–20