[go: up one dir, main page]

Follow
Lukas Wegmeth
Lukas Wegmeth
REWE Group
Verified email at rewe-group.com
Title
Cited by
Cited by
Year
A machine learning framework for automated accident detection based on multimodal sensors in cars
H Hozhabr Pour, F Li, L Wegmeth, C Trense, R Doniec, M Grzegorzek, ...
Sensors 22 (10), 3634, 2022
782022
From Clicks to Carbon: The Environmental Toll of Recommender Systems
T Vente, L Wegmeth, A Said, J Beel
Proceedings of the 18th ACM Conference on Recommender Systems, 2024
472024
The Effect of Random Seeds for Data Splitting on Recommendation Accuracy
L Wegmeth, T Vente, L Purucker, J Beel
Proceedings of the 3rd Perspectives on the Evaluation of Recommender Systems …, 2023
162023
Green Recommender Systems: A Call for Attention
J Beel, A Said, T Vente, L Wegmeth
ACM SIGIR Forum 58 (2), 1-5, 2025
132025
EMERS: Energy Meter for Recommender
L Wegmeth, T Vente¹, A Said, J Beel¹
Recommender Systems for Sustainability and Social Good: First International …, 2025
10*2025
e-Fold Cross-Validation for Recommender-System Evaluation
M Baumgart, L Wegmeth, T Vente, J Beel
RecSoGood: First International Workshop on Recommender Systems for …, 2024
102024
CaMeLS: Cooperative Meta-Learning Service for Recommender Systems
L Wegmeth, J Beel
Proceedings of the 2nd Perspectives on the Evaluation of Recommender Systems …, 2022
92022
Feature extraction and classification of sensor signals in cars based on a modified codebook approach
H Hozhabr Pour, L Wegmeth, A Kordes, M Grzegorzek, R Wismüller
International Conference on Computer Recognition Systems, 184-194, 2019
72019
The Potential of AutoML for Recommender Systems
T Vente, L Wegmeth, J Beel
Adjunct Proceedings of the 33rd ACM Conference on User Modeling, Adaptation …, 2025
52025
Informed Dataset-Selection with Algorithm Performance Spaces
J Beel, L Wegmeth, L Michiels, S Schulz
Proceedings of the 18th ACM Conference on Recommender Systems, 2024
52024
The Impact of Feature Quantity on Recommendation Algorithm Performance
L Wegmeth
32nd Irish Conference on Artificial Intelligence and Cognitive Science 13, 2022
5*2022
Greedy Ensemble Selection for Top-N Recommendations
T Vente, Z Mehta, L Wegmeth, J Beel
RobustRecSys: Design, Evaluation and Deployment of Robust Recommender Systems, 2024
42024
Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback Datasets
L Wegmeth, T Vente, J Beel
Proceedings of the 18th ACM Conference on Recommender Systems, 2024
42024
Best-Practices for Offline Evaluations of Recommender Systems
J Beel, D Jannach, A Said, G Shani, T Vente, L Wegmeth
Dagstuhl Seminar Report, 2024
42024
E-fold cross-validation: A computing and energy-efficient alternative to k-fold cross-validation with adaptive folds [proposal]. OSF Preprints (2024)
J Beel, L Wegmeth, T Vente
42024
Improving Recommender Systems Through the Automation of Design Decisions
L Wegmeth
Proceedings of the 17th ACM Conference on Recommender Systems, 1332-1338, 2023
42023
Detecting Handwritten Mathematical Terms with Sensor Based Data
L Wegmeth, A Hoelzemann, K Van Laerhoven
arXiv preprint arXiv:2109.05594, 2021
42021
e-fold cross-validation: A computing and energy-efficient alternative to k-fold cross-validation with adaptive folds
J Beel, L Wegmeth, T Vente
OSF, 2024
12024
Revealing the Hidden Impact of Top-N Metrics on Optimization in Recommender Systems
L Wegmeth, T Vente, L Purucker
European Conference on Information Retrieval, 140-156, 2024
12024
Automating Recommender Systems: Advances in Algorithm Selection, Evaluation, and Sustainability
L Wegmeth
Universitätsbibliothek Siegen, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20