[go: up one dir, main page]

Follow
Marina Marie-Claire Höhne (née Vidovic)
Marina Marie-Claire Höhne (née Vidovic)
Full Professor at Uni Potsdam, Head of the Data Science department at ATB-Potsdam
Verified email at uni-potsdam.de
Title
Cited by
Cited by
Year
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
A Hedström, L Weber, D Krakowczyk, D Bareeva, F Motzkus, W Samek, ...
Journal of Machine Learning Research 24 (34), 1-11, 2023
3592023
Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
MMC Vidovic, HJ Hwang, S Amsüss, JM Hahne, D Farina, KR Müller
IEEE Transactions on Neural Systems and Rehabilitation Engineering 24 (9 …, 2015
2182015
Finding the right XAI method—a guide for the evaluation and ranking of explainable AI methods in climate science
PL Bommer, M Kretschmer, A Hedström, D Bareeva, MMC Höhne
Artificial Intelligence for the Earth Systems 3 (3), e230074, 2024
942024
DeepCOMBI: explainable artificial intelligence for the analysis and discovery in genome-wide association studies
B Mieth, A Rozier, JA Rodriguez, MMC Höhne, N Görnitz, KR Müller
NAR genomics and bioinformatics 3 (3), lqab065, 2021
642021
This looks more like that: Enhancing self-explaining models by prototypical relevance propagation
S Gautam, MMC Höhne, S Hansen, R Jenssen, M Kampffmeyer
Pattern Recognition 136, 109172, 2023
622023
Protovae: A trustworthy self-explainable prototypical variational model
S Gautam, A Boubekki, S Hansen, S Salahuddin, R Jenssen, M Höhne, ...
Advances in Neural Information Processing Systems 35, 17940-17952, 2022
592022
Noisegrad—enhancing explanations by introducing stochasticity to model weights
K Bykov, A Hedström, S Nakajima, MMC Höhne
Proceedings of the AAAI Conference on Artificial Intelligence 36 (6), 6132-6140, 2022
522022
Feature importance measure for non-linear learning algorithms
MMC Vidovic, N Görnitz, KR Müller, M Kloft
arXiv preprint arXiv:1611.07567, 2016
502016
The meta-evaluation problem in explainable AI: identifying reliable estimators with MetaQuantus
A Hedström, P Bommer, KK Wickstrøm, W Samek, S Lapuschkin, ...
arXiv preprint arXiv:2302.07265, 2023
442023
Using transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data
B Mieth, JRF Hockley, N Görnitz, MMC Vidovic, KR Müller, A Gutteridge, ...
Scientific reports 9 (1), 20353, 2019
432019
Explaining bayesian neural networks
K Bykov, MMC Höhne, A Creosteanu, KR Müller, F Klauschen, ...
arXiv preprint arXiv:2108.10346, 2021
422021
How Much Can I Trust You?--Quantifying Uncertainties in Explaining Neural Networks
K Bykov, MMC Höhne, KR Müller, S Nakajima, M Kloft
arXiv preprint arXiv:2006.09000, 2020
422020
Labeling neural representations with inverse recognition
K Bykov, L Kopf, S Nakajima, M Kloft, M Höhne
Advances in Neural Information Processing Systems 36, 24804-24828, 2023
292023
Covariate shift adaptation in EMG pattern recognition for prosthetic device control
MMC Vidovic, LP Paredes, HJ Hwang, S Amsu, J Pahl, JM Hahne, ...
2014 36th annual international conference of the IEEE engineering in …, 2014
222014
DORA: Exploring outlier representations in deep neural networks
K Bykov, M Deb, D Grinwald, KR Müller, MMC Höhne
arXiv preprint arXiv:2206.04530, 2022
212022
Opening the black box: Revealing interpretable sequence motifs in kernel-based learning algorithms
MMC Vidovic, N Görnitz, KR Müller, G Rätsch, M Kloft
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2015
182015
Sanity checks revisited: An exploration to repair the model parameter randomisation test
A Hedström, L Weber, S Lapuschkin, M Höhne
arXiv preprint arXiv:2401.06465, 2024
162024
Self-supervised learning for 3d medical image analysis using 3d simclr and monte carlo dropout
Y Ali, A Taleb, MMC Höhne, C Lippert
arXiv preprint arXiv:2109.14288, 2021
142021
Cosy: Evaluating textual explanations of neurons
L Kopf, PL Bommer, A Hedström, S Lapuschkin, M Höhne, K Bykov
Advances in Neural Information Processing Systems 37, 34656-34685, 2024
132024
A fresh look at sanity checks for saliency maps
A Hedström, L Weber, S Lapuschkin, M Höhne
World Conference on Explainable Artificial Intelligence, 403-420, 2024
132024
The system can't perform the operation now. Try again later.
Articles 1–20