| Rethinking attention with performers K Choromanski, V Likhosherstov, D Dohan, X Song, A Gane, T Sarlos, ... arXiv preprint arXiv:2009.14794, 2020 | 2954 | 2020 |
| InterPro in 2022 T Paysan-Lafosse, M Blum, S Chuguransky, T Grego, BL Pinto, ... Nucleic acids research 51 (D1), D418-D427, 2023 | 2552 | 2023 |
| Protein 3D structure computed from evolutionary sequence variation DS Marks, LJ Colwell, R Sheridan, TA Hopf, A Pagnani, R Zecchina, ... PloS one 6 (12), e28766, 2011 | 1373 | 2011 |
| Three-dimensional structures of membrane proteins from genomic sequencing TA Hopf, LJ Colwell, R Sheridan, B Rost, C Sander, DS Marks Cell 149 (7), 1607-1621, 2012 | 618 | 2012 |
| InterPro: the protein sequence classification resource in 2025<? mode longmeta?> M Blum, A Andreeva, LC Florentino, SR Chuguransky, T Grego, E Hobbs, ... Nucleic acids research 53 (D1), D444-D456, 2025 | 592 | 2025 |
| Predicting multiple conformations via sequence clustering and AlphaFold2 HK Wayment-Steele, A Ojoawo, R Otten, JM Apitz, W Pitsawong, ... Nature 625 (7996), 832-839, 2024 | 469 | 2024 |
| MGnify: the microbiome sequence data analysis resource in 2023 L Richardson, B Allen, G Baldi, M Beracochea, ML Bileschi, T Burdett, ... Nucleic acids research 51 (D1), D753-D759, 2023 | 410 | 2023 |
| Using deep learning to annotate the protein universe ML Bileschi, D Belanger, DH Bryant, T Sanderson, B Carter, D Sculley, ... Nature biotechnology 40 (6), 932-937, 2022 | 376 | 2022 |
| Deep diversification of an AAV capsid protein by machine learning DH Bryant, A Bashir, S Sinai, NK Jain, PJ Ogden, PF Riley, GM Church, ... Nature Biotechnology 39 (6), 691-696, 2021 | 367 | 2021 |
| Comparative analysis of nanobody sequence and structure data LS Mitchell, LJ Colwell Proteins: Structure, Function, and Bioinformatics 86 (7), 697-706, 2018 | 267 | 2018 |
| The interface of protein structure, protein biophysics, and molecular evolution DA Liberles, SA Teichmann, I Bahar, U Bastolla, J Bloom, ... Protein Science 21 (6), 769-785, 2012 | 260 | 2012 |
| Computational approaches to therapeutic antibody design: established methods and emerging trends RA Norman, F Ambrosetti, AMJJ Bonvin, LJ Colwell, S Kelm, S Kumar, ... Briefings in bioinformatics 21 (5), 1549-1567, 2020 | 254 | 2020 |
| Evaluating attribution for graph neural networks B Sanchez-Lengeling, J Wei, B Lee, E Reif, P Wang, W Qian, ... Advances in neural information processing systems 33, 5898-5910, 2020 | 197 | 2020 |
| Model-based reinforcement learning for biological sequence design C Angermueller, D Dohan, D Belanger, R Deshpande, K Murphy, ... International conference on learning representations, 2019 | 192 | 2019 |
| The Pfam protein families database: embracing AI/ML T Paysan-Lafosse, A Andreeva, M Blum, SR Chuguransky, T Grego, ... Nucleic acids research 53 (D1), D523-D534, 2025 | 182 | 2025 |
| ProteInfer, deep neural networks for protein functional inference T Sanderson, ML Bileschi, D Belanger, LJ Colwell Elife 12, e80942, 2023 | 169 | 2023 |
| Analysis of nanobody paratopes reveals greater diversity than classical antibodies LS Mitchell, LJ Colwell Protein Engineering, Design and Selection 31 (7-8), 267-275, 2018 | 168 | 2018 |
| Inferring interaction partners from protein sequences AF Bitbol, RS Dwyer, LJ Colwell, NS Wingreen Proceedings of the National Academy of Sciences 113 (43), 12180-12185, 2016 | 163 | 2016 |
| Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems J Bobonis, K Mitosch, A Mateus, N Karcher, G Kritikos, J Selkrig, M Zietek, ... Nature 609 (7925), 144-150, 2022 | 157 | 2022 |
| A core subunit of Polycomb repressive complex 1 is broadly conserved in function but not primary sequence LY Beh, LJ Colwell, NJ Francis Proceedings of the National Academy of Sciences 109 (18), E1063-E1071, 2012 | 139 | 2012 |