[go: up one dir, main page]

Follow
Masanori Koyama
Masanori Koyama
Verified email at weblab.t.u-tokyo.ac.jp
Title
Cited by
Cited by
Year
Optuna: A next-generation hyperparameter optimization framework
T Akiba, S Sano, T Yanase, T Ohta, M Koyama
Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019
117262019
Spectral normalization for generative adversarial networks
T Miyato, T Kataoka, M Koyama, Y Yoshida
arXiv preprint arXiv:1802.05957, 2018
64082018
Virtual adversarial training: a regularization method for supervised and semi-supervised learning
T Miyato, S Maeda, M Koyama, S Ishii
IEEE transactions on pattern analysis and machine intelligence 41 (8), 1979-1993, 2018
36952018
cGANs with projection discriminator
T Miyato, M Koyama
arXiv preprint arXiv:1802.05637, 2018
7372018
Distributional smoothing with virtual adversarial training
T Miyato, S Maeda, M Koyama, K Nakae, S Ishii
arXiv preprint arXiv:1507.00677, 2015
5962015
Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture
G Morota, RV Ventura, FF Silva, M Koyama, SC Fernando
Journal of animal science 96 (4), 1540-1550, 2018
2502018
Train sparsely, generate densely: Memory-efficient unsupervised training of high-resolution temporal gan
M Saito, S Saito, M Koyama, S Kobayashi
International Journal of Computer Vision 128 (10), 2586-2606, 2020
1702020
A wrapped normal distribution on hyperbolic space for gradient-based learning
Y Nagano, S Yamaguchi, Y Fujita, M Koyama
International conference on machine learning, 4693-4702, 2019
1692019
Robustness to adversarial perturbations in learning from incomplete data
A Najafi, S Maeda, M Koyama, T Miyato
Advances in Neural Information Processing Systems 32, 2019
1512019
Optuna: A Next-generation Hyperparameter Optimization Framework. arXiv 2019
T Akiba, S Sano, T Yanase, T Ohta, M Koyama
arXiv preprint arXiv:1907.10902 10, 1907
1311907
Out-of-distribution generalization with maximal invariant predictor
M Koyama, S Yamaguchi
1062020
Deep learning of fMRI big data: a novel approach to subject-transfer decoding
S Koyamada, Y Shikauchi, K Nakae, M Koyama, S Ishii
arXiv preprint arXiv:1502.00093, 2015
912015
When is invariance useful in an out-of-distribution generalization problem?
M Koyama, S Yamaguchi
arXiv preprint arXiv:2008.01883, 2020
752020
Machine learning and data mining advance predictive big data analysis in precision animal agriculture
G Morota, RV Ventura, FF Silva, M Koyama, SC Fernando
Journal of Animal Science 96 (4), 1540-1550, 2018
552018
A graph theoretic framework of recomputation algorithms for memory-efficient backpropagation
M Kusumoto, T Inoue, G Watanabe, T Akiba, M Koyama
Advances in Neural Information Processing Systems 32, 2019
522019
Spatially controllable image synthesis with internal representation collaging
R Suzuki, M Koyama, T Miyato, T Yonetsuji, H Zhu
arXiv preprint arXiv:1811.10153, 2018
492018
Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data
G Morota, M Koyama, GJ M Rosa, KA Weigel, D Gianola
Genetics Selection Evolution 45 (1), 17, 2013
482013
Non-explosivity of stochastically modeled reaction networks that are complex balanced
DF Anderson, D Cappelletti, M Koyama, TG Kurtz
Bulletin of mathematical biology 80 (10), 2561-2579, 2018
402018
Graph warp module: an auxiliary module for boosting the power of graph neural networks in molecular graph analysis
K Ishiguro, S Maeda, M Koyama
arXiv preprint arXiv:1902.01020, 2019
392019
Graph warp module: an auxiliary module for boosting the power of graph neural networks
K Ishiguro, S Maeda, M Koyama
arXiv preprint arXiv:1902.01020, 2019
352019
The system can't perform the operation now. Try again later.
Articles 1–20