[go: up one dir, main page]

Follow
Keivan Alizadeh-Vahid
Keivan Alizadeh-Vahid
Verified email at apple.com
Title
Cited by
Cited by
Year
Gsm-symbolic: Understanding the limitations of mathematical reasoning in large language models
I Mirzadeh, K Alizadeh, H Shahrokhi, O Tuzel, S Bengio, M Farajtabar
arXiv preprint arXiv:2410.05229, 2024
6692024
The illusion of thinking: Understanding the strengths and limitations of reasoning models via the lens of problem complexity
P Shojaee, I Mirzadeh, K Alizadeh, M Horton, S Bengio, M Farajtabar
arXiv preprint arXiv:2506.06941, 2025
337*2025
Llm in a flash: Efficient large language model inference with limited memory
K Alizadeh, SI Mirzadeh, D Belenko, S Khatamifard, M Cho, ...
Proceedings of the 62nd Annual Meeting of the Association for Computational …, 2024
2182024
Relu strikes back: Exploiting activation sparsity in large language models
I Mirzadeh, K Alizadeh, S Mehta, CC Del Mundo, O Tuzel, G Samei, ...
arXiv preprint arXiv:2310.04564, 2023
1392023
Apple intelligence foundation language models
T Gunter, Z Wang, C Wang, R Pang, A Narayanan, A Zhang, B Zhang, ...
arXiv preprint arXiv:2407.21075, 2024
1132024
Recurrent poisson factorization for temporal recommendation
SA Hosseini, K Alizadeh, A Khodadadi, A Arabzadeh, M Farajtabar, H Zha, ...
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge …, 2017
822017
Butterfly Transform: An Efficient FFT Based Neural Architecture Design
K Alizadeh-Vahid, A Prabhu, A Farhadi, M Rastegari
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
72*2020
Dkm: Differentiable k-means clustering layer for neural network compression
M Cho, KA Vahid, S Adya, M Rastegari
arXiv preprint arXiv:2108.12659, 2021
642021
Scaling smart: Accelerating large language model pre-training with small model initialization
M Samragh, I Mirzadeh, KA Vahid, F Faghri, M Cho, M Nabi, D Naik, ...
arXiv preprint arXiv:2409.12903, 2024
162024
FLUID: A unified evaluation framework for flexible sequential data
M Wallingford, A Kusupati, K Alizadeh-Vahid, A Walsman, A Kembhavi, ...
arXiv preprint arXiv:2007.02519, 2020
15*2020
edkm: An efficient and accurate train-time weight clustering for large language models
M Cho, KA Vahid, Q Fu, S Adya, CC Del Mundo, M Rastegari, D Naik, ...
IEEE Computer Architecture Letters 23 (1), 37-40, 2024
142024
Salsa: Soup-based alignment learning for stronger adaptation in rlhf
A Chegini, H Kazemi, I Mirzadeh, D Yin, M Horton, M Nabi, M Farajtabar, ...
arXiv preprint arXiv:2411.01798, 2024
8*2024
Computational bottlenecks of training small-scale large language models
S Ashkboos, I Mirzadeh, K Alizadeh, MH Sekhavat, M Nabi, M Farajtabar, ...
arXiv preprint arXiv:2410.19456, 2024
82024
Duo-llm: A framework for studying adaptive computation in large language models
K Alizadeh, I Mirzadeh, H Shahrokhi, D Belenko, F Sun, M Cho, ...
arXiv preprint arXiv:2410.10846, 2024
4*2024
Butterfly transform layer
A Farhadi, M Rastegari, KA Vahid
US Patent 12,079,727, 2024
12024
Barriers for Learning in an Evolving World: Mathematical Understanding of Loss of Plasticity
A Joudaki, G Lanzillotta, MS Razlighi, I Mirzadeh, K Alizadeh, T Hofmann, ...
arXiv preprint arXiv:2510.00304, 2025
2025
Memory-efficient differentiable weight clustering for large language model compression
M Cho, KA Vahid, S Adya, CEC del Mundo, M Rastegari, DK Naik, ...
US Patent App. 18/658,919, 2025
2025
2020 Index IEEE Transactions on Knowledge and Data Engineering Vol. 32
T Abeywickrama, TB Adji, I Agrafiotis, S Agrawal, NK Ahmed, R Akbarinia, ...
The system can't perform the operation now. Try again later.
Articles 1–18