[go: up one dir, main page]

Follow
Steven L. Brunton
Title
Cited by
Cited by
Year
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
SL Brunton, JL Proctor, JN Kutz
Proceedings of the national academy of sciences 113 (15), 3932-3937, 2016
62472016
Data-driven science and engineering: Machine learning, dynamical systems, and control
SL Brunton, JN Kutz
Cambridge University Press, 2022
40292022
Machine learning for fluid mechanics
SL Brunton, BR Noack, P Koumoutsakos
Annual review of fluid mechanics 52 (1), 477-508, 2020
35022020
On dynamic mode decomposition: Theory and applications
JH Tu, CW Rowley, DM Luchtenburg, SL Brunton, JN Kutz
Journal of Computational Dynamics 1 (2), 391-421, 2014
27452014
Dynamic mode decomposition: data-driven modeling of complex systems
JN Kutz, SL Brunton, BW Brunton, JL Proctor
Society for Industrial and Applied Mathematics, 2016
23512016
Modal analysis of fluid flows: An overview
K Taira, SL Brunton, STM Dawson, CW Rowley, T Colonius, BJ McKeon, ...
AIAA journal 55 (12), 4013-4041, 2017
22852017
Data-driven discovery of partial differential equations
SH Rudy, SL Brunton, JL Proctor, JN Kutz
Science advances 3 (4), e1602614, 2017
20632017
Deep learning for universal linear embeddings of nonlinear dynamics
B Lusch, JN Kutz, SL Brunton
Nature communications 9 (1), 4950, 2018
18602018
Dynamic mode decomposition with control
JL Proctor, SL Brunton, JN Kutz
SIAM Journal on Applied Dynamical Systems 15 (1), 142-161, 2016
14632016
Data-driven discovery of coordinates and governing equations
K Champion, B Lusch, JN Kutz, SL Brunton
Proceedings of the National Academy of Sciences 116 (45), 22445-22451, 2019
12372019
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
E Kaiser, JN Kutz, SL Brunton
Proceedings of the Royal Society A 474 (2219), 20180335, 2018
8822018
Modern Koopman theory for dynamical systems
SL Brunton, M Budišić, E Kaiser, JN Kutz
arXiv preprint arXiv:2102.12086, 2021
8302021
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
SL Brunton, BW Brunton, JL Proctor, JN Kutz
PloS one 11 (2), e0150171, 2016
8262016
Chaos as an intermittently forced linear system
SL Brunton, BW Brunton, JL Proctor, E Kaiser, JN Kutz
Nature Communications 8 (19), 1--9, 2017
7652017
Closed-loop turbulence control: Progress and challenges
SL Brunton, BR Noack
Applied Mechanics Reviews 67 (5), 050801, 2015
7382015
Modal analysis of fluid flows: Applications and outlook
K Taira, MS Hemati, SL Brunton, Y Sun, K Duraisamy, S Bagheri, ...
AIAA journal 58 (3), 998-1022, 2020
7022020
Enhancing computational fluid dynamics with machine learning
R Vinuesa, SL Brunton
Nature Computational Science 2 (6), 358-366, 2022
6692022
Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns
K Manohar, BW Brunton, JN Kutz, SL Brunton
IEEE Control Systems Magazine 38 (3), 63-86, 2018
6152018
Inferring biological networks by sparse identification of nonlinear dynamics
NM Mangan, SL Brunton, JL Proctor, JN Kutz
IEEE Transactions on Molecular, Biological, and Multi-Scale Communications 2 …, 2017
5622017
Multiresolution dynamic mode decomposition
JN Kutz, X Fu, SL Brunton
SIAM Journal on Applied Dynamical Systems 15 (2), 713-735, 2016
5392016
The system can't perform the operation now. Try again later.
Articles 1–20