[go: up one dir, main page]

Follow
Mara Schilling-Wilhelmi
Mara Schilling-Wilhelmi
Other namesMara Wilhelmi
Verified email at uni-jena.de
Title
Cited by
Cited by
Year
A framework for evaluating the chemical knowledge and reasoning abilities of large language models against the expertise of chemists
A Mirza, N Alampara, S Kunchapu, M Ríos-García, B Emoekabu, ...
Nature Chemistry, 1-8, 2025
135*2025
From text to insight: large language models for chemical data extraction
M Schilling-Wilhelmi, M Ríos-García, S Shabih, MV Gil, S Miret, CT Koch, ...
Chemical Society Reviews, 2025
1252025
Probing the limitations of multimodal language models for chemistry and materials research
N Alampara, M Schilling-Wilhelmi, M Ríos-García, I Mandal, P Khetarpal, ...
Nature computational science 5 (10), 952-961, 2025
41*2025
Reflections from the 2024 large language model (llm) hackathon for applications in materials science and chemistry
Y Zimmermann, A Bazgir, Z Afzal, F Agbere, Q Ai, N Alampara, ...
arXiv preprint arXiv:2411.15221, 2024
122024
Lessons from the trenches on evaluating machine-learning systems in materials science
N Alampara, M Schilling-Wilhelmi, KM Jablonka
arXiv preprint arXiv:2503.10837, 2025
62025
General-Purpose Models for the Chemical Sciences: LLMs and Beyond
N Alampara, A Aneesh, M Ríos-García, A Mirza, M Schilling-Wilhelmi, ...
arXiv preprint arXiv:2507.07456, 2025
4*2025
Tailoring gene transfer efficacy through the arrangement of cationic and anionic blocks in triblock copolymer micelles
K Leer, LS Reichel, M Wilhelmi, JC Brendel, A Traeger
ACS Macro Letters 13 (2), 158-165, 2024
42024
Using machine-learning and large-language-model extracted data to predict copolymerizations
M Schilling-Wilhelmi, KM Jablonka
AI for Accelerated Materials Design-Vienna 2024, 2024
32024
Lifting the benchmark iceberg with item-response theory
M Schilling-Wilhelmi, N Alampara, KM Jablonka
AI for Accelerated Materials Design-ICLR 2025, 0
1
The system can't perform the operation now. Try again later.
Articles 1–9