| mixup: Beyond empirical risk minimization H Zhang, M Cisse, YN Dauphin, D Lopez-Paz ICLR, 2018 | 15104 | 2018 |
| Gradient Episodic Memory for Continual Learning D Lopez-Paz, MA Ranzato NeurIPS, 2017 | 4042 | 2017 |
| Invariant risk minimization M Arjovsky, L Bottou, I Gulrajani, D Lopez-Paz arXiv, 2019 | 3166 | 2019 |
| Manifold mixup: learning better representations by interpolating hidden states V Verma, A Lamb, C Beckham, A Najafi, A Courville, I Mitliagkas, ... ICML, 2019 | 1852* | 2019 |
| In Search of Lost Domain Generalization I Gulrajani, D Lopez-Paz ICLR, 2021 | 1629 | 2021 |
| Interpolation consistency training for semi-supervised learning V Verma, A Lamb, J Kannala, Y Bengio, D Lopez-Paz IJCAI, 2019 | 1062 | 2019 |
| Unifying distillation and privileged information D Lopez-Paz, L Bottou, B Schölkopf, V Vapnik ICLR, 2016 | 637 | 2016 |
| Revisiting classifier two-sample tests D Lopez-Paz, M Oquab ICLR, 2017 | 615 | 2017 |
| Optimizing the latent space of generative networks P Bojanowski, A Joulin, D Lopez-Paz, A Szlam ICML, 2018 | 583 | 2018 |
| Single-Model Uncertainties for Deep Learning N Tagasovska, D Lopez-Paz NeurIPS, 2019 | 413 | 2019 |
| Discovering causal signals in images D Lopez-Paz, R Nishihara, S Chintala, B Scholkopf, L Bottou CVPR, 2017 | 331 | 2017 |
| Using hindsight to anchor past knowledge in continual learning A Chaudhry, A Gordo, PK Dokania, P Torr, D Lopez-Paz AAAI, 2021 | 321 | 2021 |
| Predicting cellular responses to complex perturbations in high‐throughput screens M Lotfollahi, A Klimovskaia Susmelj, C De Donno, L Hetzel, Y Ji, IL Ibarra, ... Molecular systems biology 19 (6), e11517, 2023 | 297* | 2023 |
| The Randomized Dependence Coefficient D Lopez-Paz, P Hennig, B Schölkopf NeurIPS, 2013 | 294 | 2013 |
| Randomized Nonlinear Component Analysis D Lopez-Paz, S Sra, A Smola, Z Ghahramani, B Schölkopf ICML, 2014 | 254 | 2014 |
| Towards a Learning Theory of Cause-Effect Inference D Lopez-Paz, K Muandet, B Schölkopf, I Tolstikhin ICML, 2015 | 249 | 2015 |
| Simple data balancing achieves competitive worst-group-accuracy BY Idrissi, M Arjovsky, M Pezeshki, D Lopez-Paz Conference on Causal Learning and Reasoning, 336-351, 2022 | 246 | 2022 |
| Better & faster large language models via multi-token prediction F Gloeckle, BY Idrissi, B Rozière, D Lopez-Paz, G Synnaeve arXiv preprint arXiv:2404.19737, 2024 | 223 | 2024 |
| Learning functional causal models with generative neural networks O Goudet, D Kalainathan, P Caillou, I Guyon, D Lopez-Paz, M Sebag Explainable and Interpretable Models in Computer Vision and Machine Learning …, 2018 | 223 | 2018 |
| SAM: Structural Agnostic Model, causal discovery and penalized adversarial learning D Kalainathan, O Goudet, I Guyon, D Lopez-Paz, M Sebag arXiv, 2018 | 187* | 2018 |