[go: up one dir, main page]

Follow
Bertrand MICHEL
Bertrand MICHEL
Ecole Centrale de Nantes , Nantes Université, Laboratoire de Mathématiques Jean Leray
Verified email at ec-nantes.fr - Homepage
Title
Cited by
Cited by
Year
Correlation and variable importance in random forests
B Gregorutti, B Michel, P Saint-Pierre
Statistics and Computing 27 (3), 659-678, 2017
12862017
An introduction to topological data analysis: fundamental and practical aspects for data scientists
F Chazal, B Michel
Frontiers in artificial intelligence 4, 667963, 2021
10462021
Slope heuristics: overview and implementation
JP Baudry, C Maugis, B Michel
Statistics and Computing 22 (2), 455-470, 2012
2792012
Grouped variable importance with random forests and application to multiple functional data analysis
B Gregorutti, B Michel, P Saint-Pierre
Computational Statistics & Data Analysis 90, 15-35, 2015
1882015
Robust topological inference: Distance to a measure and kernel distance
F Chazal, B Fasy, F Lecci, B Michel, A Rinaldo, L Wasserman
Journal of Machine Learning Research 18 (159), 1-40, 2018
1822018
Subsampling methods for persistent homology
F Chazal, B Fasy, F Lecci, B Michel, A Rinaldo, L Wasserman
International Conference on Machine Learning, 2143-2151, 2015
1622015
Convergence rates for persistence diagram estimation in topological data analysis
F Chazal, M Glisse, C Labruère, B Michel
International Conference on Machine Learning, 163-171, 2014
158*2014
Estimating the reach of a manifold
E Aamari, J Kim, F Chazal, B Michel, A Rinaldo, L Wasserman
1452019
Statistical Analysis and Parameter Selection for Mapper
M Carriere, B Michel, S Oudot
Journal of Machine Learning Research 19 (12), 2018
1222018
A non asymptotic penalized criterion for Gaussian mixture model selection
C Maugis, B Michel
ESAIM: Probability and Statistics 15, 41-68, 2011
1002011
Data-driven penalty calibration: A case studyfor Gaussian mixture model selection
C Maugis, B Michel
ESAIM: Probability and Statistics 15, 320-339, 2011
57*2011
Deconvolution for the Wasserstein metric and geometric inference
C Caillerie, F Chazal, J Dedecker, B Michel
International Conference on Geometric Science of Information, 561-568, 2013
562013
Rates of convergence for robust geometric inference
F Chazal, P Massart, B Michel
Electron. J. Statist. 10 (2), 2243-2286, 2016
412016
Adaptive density estimation for clustering with Gaussian mixtures
C Maugis-Rabusseau, B Michel
ESAIM: Probability and Statistics 17, 698-724, 2013
372013
Oil production: A probabilistic model of the Hubbert curve
B Michel
Applied Stochastic Models in Business and Industry 27 (4), 434-449, 2011
332011
Minimax rates of convergence for Wasserstein deconvolution with supersmooth errors in any dimension
J Dedecker, B Michel
Journal of Multivariate Analysis 122, 278-291, 2013
302013
Learning with tree tensor networks: complexity estimates and model selection
B Michel, A Nouy
Bernoulli 28 (2), 910-936, 2022
242022
Development of an absolute assignment predictor for triple-negative breast cancer subtyping using machine learning approaches
FB Azzouz, B Michel, H Lasla, W Gouraud, AF François, F Girka, ...
Computers in Biology and Medicine 129, 104171, 2021
222021
Improved rates for Wasserstein deconvolution with ordinary smooth error in dimension one
J Dedecker, A Fischer, B Michel
202015
Model selection for simplicial approximation
C Caillerie, B Michel
Foundations of Computational Mathematics 11 (6), 707-731, 2011
182011
The system can't perform the operation now. Try again later.
Articles 1–20