[go: up one dir, main page]

Follow
Mary Alice Cusentino
Title
Cited by
Cited by
Year
Data-driven material models for atomistic simulation
MA Wood, MA Cusentino, BD Wirth, AP Thompson
Physical Review B 99 (18), 184305, 2019
902019
Explicit multielement extension of the spectral neighbor analysis potential for chemically complex systems
MA Cusentino, MA Wood, AP Thompson
The Journal of Physical Chemistry A 124 (26), 5456-5464, 2020
692020
FitSNAP: Atomistic machine learning with LAMMPS
A Rohskopf, C Sievers, N Lubbers, MA Cusentino, J Goff, J Janssen, ...
Journal of Open Source Software 8 (84), 5118, 2023
562023
A molecular dynamics study of subsurface hydrogen-helium bubbles in tungsten
ZJ Bergstrom, MA Cusentino, BD Wirth
Fusion Science and Technology 71 (1), 122-135, 2017
502017
Compositional and structural origins of radiation damage mitigation in high-entropy alloys
MA Cusentino, MA Wood, R Dingreville
Journal of Applied Physics 128 (12), 2020
452020
Molecular statics calculations of the biases and point defect capture volumes of small cavities
AA Kohnert, MA Cusentino, BD Wirth
Journal of Nuclear Materials 499, 480-489, 2018
422018
A comparison of interatomic potentials for modeling tungsten–hydrogen–helium plasma–surface interactions
MA Cusentino, KD Hammond, F Sefta, N Juslin, BD Wirth
Journal of Nuclear Materials 463, 347-350, 2015
332015
Machine learned interatomic potential for dispersion strengthened plasma facing components
EL Sikorski, MA Cusentino, MJ McCarthy, J Tranchida, MA Wood, ...
The Journal of Chemical Physics 158 (11), 2023
212023
Suppression of helium bubble nucleation in beryllium exposed tungsten surfaces
MA Cusentino, MA Wood, AP Thompson
Nuclear Fusion 60 (12), 126018, 2020
112020
Helium diffusion and bubble evolution in tungsten nanotendrils
MA Cusentino, BD Wirth
Computational Materials Science 183, 109875, 2020
92020
Beryllium-driven structural evolution at the divertor surface
MA Cusentino, MA Wood, AP Thompson
Nuclear fusion 61 (4), 046049, 2021
82021
Machine learned interatomic potentials for gas-metal interactions
MA Cusentino, MA Wood, AP Thompson
Modelling and Simulation in Materials Science and Engineering 33 (1), 015007, 2024
52024
Development of multi-scale computational frameworks to solve fusion materials science challenges
A Lasa, S Blondel, MA Cusentino, D Dasgupta, P Hatton, J Marian, ...
Journal of Nuclear Materials 594, 155011, 2024
42024
Dynamic formation of preferentially lattice oriented, self trapped hydrogen clusters
MA Cusentino, EL Sikorski, MJ McCarthy, AP Thompson, MA Wood
Materials Research Express 10 (10), 106513, 2023
32023
Discovering key unknowns for tungsten-hydrogen-helium plasma material interactions using molecular dynamics
MA Cusentino
32018
Assessment of the literature about Be-W mixed material layer formation in the fusion reactor environment
A Lasa, D Dasgupta, MJ Baldwin, MA Cusentino, P Hatton, D Perez, ...
Materials Research Express 11 (3), 032002, 2024
22024
Molecular dynamics of high pressure tin phases: Empirical and machine learned interatomic potentials
MA Cusentino, B Nebgen, KM Barros, JS Smith, JD Shimanek, A Allen, ...
AIP conference proceedings 2844 (1), 320002, 2023
22023
The effect of composition on helium bubble nucleation in complex concentrated alloys
MJ McCarthy, KM Karl, MA Cusentino
Journal of Applied Physics 137 (17), 2025
12025
Overview of advanced plasma-facing materials testing for Fusion Pilot Plants at DIII-D
J Coburn, F Effenberg, MA Cusentino, C Hargrove, M Ialovega, M Morbey, ...
Nuclear Materials and Energy, 102064, 2026
2026
A Machine Learning Approach for Atomistic-Informed Modeling of Particle Exchange in a Plasma-Surface Interface
GM Gorman, TJ Hardin, MA Cusentino, MM Hopkins
GEC 2025, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20