[go: up one dir, main page]

Follow
Georg Krempl
Georg Krempl
Information and Computing Sciences, Utrecht University, The Netherlands
Verified email at uu.nl - Homepage
Title
Cited by
Cited by
Year
Open challenges for data stream mining research
G Krempl, I Žliobaite, D Brzeziński, E Hüllermeier, M Last, V Lemaire, ...
ACM SIGKDD explorations newsletter 16 (1), 1-10, 2014
4202014
Optimised probabilistic active learning (OPAL) For fast, non-myopic, cost-sensitive active classification
G Krempl, D Kottke, V Lemaire
Machine Learning 100 (2-3), 449-476, 2015
582015
Drift mining in data: A framework for addressing drift in classification
V Hofer, G Krempl
Computational Statistics & Data Analysis 57 (1), 377-391, 2013
562013
Transfer learning for time series anomaly detection
V Vercruyssen, W Meert, J Davis, G Krempl, V Lemaire, R Polikar, B Sick, ...
Proceedings of the Workshop and Tutorial on Interactive Adaptive Learning …, 2017
522017
The algorithm APT to classify in concurrence of latency and drift
G Krempl
International Symposium on Intelligent Data Analysis, 222-233, 2011
462011
Challenges of reliable, realistic and comparable active learning evaluation
D Kottke, A Calma, D Huseljic, GM Krempl, B Sick
Proceedings of the workshop and tutorial on interactive adaptive learning, 2-14, 2017
432017
Classification in presence of drift and latency
G Krempl, V Hofer
2011 IEEE 11th International Conference on Data Mining Workshops, 596-603, 2011
382011
Multi-class probabilistic active learning
D Kottke, G Krempl, D Lang, J Teschner, M Spiliopoulou
ECAI 2016, 586-594, 2016
352016
Probabilistic active learning in datastreams
D Kottke, G Krempl, M Spiliopoulou
International Symposium on Intelligent Data Analysis, 145-157, 2015
352015
Toward optimal probabilistic active learning using a Bayesian approach
D Kottke, M Herde, C Sandrock, D Huseljic, G Krempl, B Sick
Machine learning 110 (6), 1199-1231, 2021
332021
Correcting the usage of the hoeffding inequality in stream mining
P Matuszyk, G Krempl, M Spiliopoulou
International Symposium on Intelligent Data Analysis, 298-309, 2013
322013
I. ˇZliobaite, D
G Krempl
Brzezinski, E. Hüllermeier, M. Last, V. Lemaire, T. Noack, A. Shaker, S …, 2014
312014
Stream-based active learning for sliding windows under the influence of verification latency
T Pham, D Kottke, G Krempl, B Sick
Machine Learning 111 (6), 2011-2036, 2022
292022
Probabilistic active learning: Towards combining versatility, optimality and efficiency
G Krempl, D Kottke, M Spiliopoulou
International Conference on Discovery Science, 168-179, 2014
242014
Online clustering of high-dimensional trajectories under concept drift
G Krempl, ZF Siddiqui, M Spiliopoulou
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2011
182011
Frontiers in artificial intelligence and applications
P Wang, Q Wang, S Jin, W Long, L Hu
IOS Press. chapter What do you mean by AI 171 (1), 362-373, 2008
172008
Probabilistic active learning for active class selection
D Kottke, G Krempl, M Stecklina, CS von Rekowski, T Sabsch, TP Minh, ...
arXiv preprint arXiv:2108.03891, 2021
162021
Clustering-based optimised probabilistic active learning (COPAL)
G Krempl, TC Ha, M Spiliopoulou
International conference on discovery science, 101-115, 2015
132015
How to Select Information That Matters: A Comparative Study on Active Learning Strategies for Classification
C Beyer, G Krempl, V Lemaire
15th ACM International Conference on Knowledge Technologies and Data-Driven …, 2015
112015
Advances in Intelligent Data Analysis XVIII: 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27–29, 2020, Proceedings
MR Berthold, A Feelders, G Krempl
Springer Nature, 2020
102020
The system can't perform the operation now. Try again later.
Articles 1–20