[go: up one dir, main page]

Follow
Jan N. van Rijn
Jan N. van Rijn
Verified email at liacs.leidenuniv.nl - Homepage
Title
Cited by
Cited by
Year
OpenML: networked science in machine learning
J Vanschoren, JN Van Rijn, B Bischl, L Torgo
ACM SIGKDD Explorations Newsletter 15 (2), 49-60, 2014
18842014
A survey of deep meta-learning
M Huisman, JN Van Rijn, A Plaat
Artificial Intelligence Review 54 (6), 4483-4541, 2021
5392021
Hyperparameter importance across datasets
JN Van Rijn, F Hutter
Proceedings of the 24th ACM SIGKDD international conference on knowledge …, 2018
3812018
Openml benchmarking suites
B Bischl, G Casalicchio, M Feurer, P Gijsbers, F Hutter, M Lang, ...
Proceedings of the Neural Information Processing Systems Track on Datasets …, 2021
270*2021
Openml-python: an extensible python api for openml
M Feurer, JN Van Rijn, A Kadra, P Gijsbers, N Mallik, S Ravi, A Müller, ...
Journal of Machine Learning Research 22 (100), 1-5, 2021
1502021
Automated machine learning: past, present and future
M Baratchi, C Wang, S Limmer, JN Van Rijn, H Hoos, T Bäck, M Olhofer
Artificial intelligence review 57 (5), 122, 2024
1482024
The online performance estimation framework: heterogeneous ensemble learning for data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
Machine Learning 107 (1), 149-176, 2018
1392018
Learning curves for decision making in supervised machine learning: a survey
F Mohr, JN van Rijn
Machine Learning 113 (11), 8371-8425, 2024
1272024
OpenML: A collaborative science platform
JN Van Rijn, B Bischl, L Torgo, B Gao, V Umaashankar, S Fischer, ...
Joint european conference on machine learning and knowledge discovery in …, 2013
1242013
Metalearning: Applications to automated machine learning and data mining
P Brazdil, JN Van Rijn, C Soares, J Vanschoren
Springer Nature, 2022
1182022
Fast algorithm selection using learning curves
JN van Rijn, SM Abdulrahman, P Brazdil, J Vanschoren
International symposium on intelligent data analysis, 298-309, 2015
1102015
Speeding up algorithm selection using average ranking and active testing by introducing runtime
SM Abdulrahman, P Brazdil, JN Van Rijn, J Vanschoren
Machine learning 107 (1), 79-108, 2018
932018
The algorithm selection competitions 2015 and 2017
M Lindauer, JN van Rijn, L Kotthoff
Artificial Intelligence 272, 86-100, 2019
85*2019
Algorithm selection on data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
International conference on discovery science, 325-336, 2014
852014
Fast and informative model selection using learning curve cross-validation
F Mohr, JN van Rijn
IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (8), 9669-9680, 2023
722023
OpenML benchmarking suites and the OpenML100
B Bischl, G Casalicchio, M Feurer, F Hutter, M Lang, RG Mantovani, ...
stat 1050 (11), 97, 2017
692017
Having a blast: Meta-learning and heterogeneous ensembles for data streams
JN van Rijn, G Holmes, B Pfahringer, J Vanschoren
2015 ieee international conference on data mining, 1003-1008, 2015
672015
Artificial intelligence to advance earth observation: a perspective
D Tuia, K Schindler, B Demir, G Camps-Valls, XX Zhu, M Kochupillai, ...
arXiv preprint arXiv:2305.08413 1 (3), 2023
632023
Meta-album: Multi-domain meta-dataset for few-shot image classification
I Ullah, D Carrión-Ojeda, S Escalera, I Guyon, M Huisman, F Mohr, ...
Advances in Neural Information Processing Systems 35, 3232-3247, 2022
612022
Artificial Intelligence to Advance Earth Observation: A review of models, recent trends, and pathways forward
D Tuia, K Schindler, B Demir, XX Zhu, M Kochupillai, S Džeroski, ...
IEEE Geoscience and Remote Sensing Magazine, 2024
582024
The system can't perform the operation now. Try again later.
Articles 1–20