[go: up one dir, main page]

Follow
Kamil Adamczewski
Kamil Adamczewski
Max Planck Institute for Intelligent Systems
Verified email at ideas-ncbr.pl
Title
Cited by
Cited by
Year
Revisiting random channel pruning for neural network compression
Y Li, K Adamczewski, W Li, S Gu, R Timofte, L Van Gool
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022
1582022
Dp-merf: Differentially private mean embeddings with randomfeatures for practical privacy-preserving data generation
F Harder, K Adamczewski, M Park
International conference on artificial intelligence and statistics, 1819-1827, 2021
1502021
Scaling laws for fine-grained mixture of experts
J Krajewski, J Ludziejewski, K Adamczewski, M Pióro, M Krutul, ...
arXiv preprint arXiv:2402.07871, 2024
100*2024
Discrete tabu search for graph matching
K Adamczewski, Y Suh, K Mu Lee
Proceedings of the IEEE international conference on computer vision, 109-117, 2015
632015
Hermite polynomial features for private data generation
M Vinaroz, MA Charusaie, F Harder, K Adamczewski, MJ Park
International Conference on Machine Learning, 22300-22324, 2022
382022
Radial and directional posteriors for bayesian deep learning
C Oh, K Adamczewski, M Park
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 5298-5305, 2020
34*2020
Subgraph matching using compactness prior for robust feature correspondence
Y Suh, K Adamczewski, K Mu Lee
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015
292015
Differentially Private Neural Tangent Kernels (DP-NTK) for Privacy-Preserving Data Generation
Y Yang, K Adamczewski, X Li, DJ Sutherland, M Park
Journal of Artificial Intelligence Research 81, 683-700, 2024
212024
Differential privacy meets neural network pruning
K Adamczewski, M Park
arXiv preprint arXiv:2303.04612, 2023
132023
Dirichlet pruning for convolutional neural networks
K Adamczewski, M Park
International Conference on Artificial Intelligence and Statistics, 3637-3645, 2021
10*2021
How good is the Shapley value-based approach to the influence maximization problem?
K Adamczewski, S Matejczyk, TP Michalak
arXiv preprint arXiv:1409.7830, 2014
9*2014
Joint MoE Scaling Laws: Mixture of Experts Can Be Memory Efficient
J Ludziejewski, M Pióro, J Krajewski, M Stefaniak, M Krutul, J Małaśnicki, ...
arXiv preprint arXiv:2502.05172, 2025
62025
Adaglimpse: Active visual exploration with arbitrary glimpse position and scale
A Pardyl, M Wronka, M Wołczyk, K Adamczewski, T Trzciński, B Zieliński
European Conference on Computer Vision, 112-129, 2024
52024
Bayesian importance of features (bif)
K Adamczewski, F Harder, M Park
arXiv preprint arXiv:2010.13872, 2020
52020
Pre-Pruning and Gradient-Dropping Improve Differentially Private Image Classification
K Adamczewski, Y He, M Park
arXiv preprint arXiv:2306.11754, 2023
42023
Shapley Pruning for Neural Network Compression
K Adamczewski, Y Li, L Van Gool
arXiv preprint arXiv:2407.15875, 2024
32024
Neuron ranking--an informed way to condense convolutional neural networks architecture
K Adamczewski, M Park
arXiv preprint arXiv:1907.02519, 2019
32019
One shot vs. iterative: Rethinking pruning strategies for model compression
M Janusz, T Wojnar, Y Li, L Benini, K Adamczewski
arXiv preprint arXiv:2508.13836, 2025
22025
Lidar line selection with spatially-aware shapley value for cost-efficient depth completion
K Adamczewski, C Sakaridis, V Patil, L Van Gool
Conference on Robot Learning, 561-570, 2023
22023
The Smoothed Pólya-Vinogradov Inequality.
K Adamczewski, E Trevino
Integers 15, A20, 2015
22015
The system can't perform the operation now. Try again later.
Articles 1–20