[go: up one dir, main page]

Follow
Marcel Wienöbst
Marcel Wienöbst
Verified email at tcs.uni-luebeck.de - Homepage
Title
Cited by
Cited by
Year
Polynomial-time algorithms for counting and sampling Markov equivalent DAGs
M Wienöbst, M Bannach, M Liskiewicz
Proceedings of the AAAI Conference on Artificial Intelligence 35 (13), 12198 …, 2021
322021
Extendability of causal graphical models: Algorithms and computational complexity
M Wienöbst, M Bannach, M Liśkiewicz
Uncertainty in Artificial Intelligence, 1248-1257, 2021
232021
Recovering causal structures from low-order conditional independencies
M Wienöbst, M Liskiewicz
Proceedings of the AAAI Conference on Artificial Intelligence 34 (06), 10302 …, 2020
142020
Efficient enumeration of markov equivalent dags
M Wienöbst, M Luttermann, M Bannach, M Liskiewicz
Proceedings of the AAAI Conference on Artificial Intelligence 37 (10), 12313 …, 2023
102023
Linear-time algorithms for front-door adjustment in causal graphs
M Wienöbst, B van der Zander, M Liśkiewicz
Proceedings of the AAAI Conference on Artificial Intelligence 38 (18), 20577 …, 2024
9*2024
Polynomial-time algorithms for counting and sampling markov equivalent dags with applications
M Wienöbst, M Bannach, M Liśkiewicz
Journal of Machine Learning Research 24 (213), 1-45, 2023
92023
A new constructive criterion for markov equivalence of mags
M Wienöbst, M Bannach, M Liśkiewicz
Uncertainty in Artificial Intelligence, 2107-2116, 2022
72022
Causal structure learning with momentum: Sampling distributions over Markov Equivalence Classes
M Schauer, M Wienöbst
Proceedings of Machine Learning Research 246, 382-400, 2024
3*2024
PACE solver description: UzL exact solver for one-sided crossing minimization
M Bannach, F Chudigiewitsch, KM Klein, M Wienöbst
19th International Symposium on Parameterized and Exact Computation (IPEC …, 2024
32024
An approach to reduce the number of conditional independence tests in the pc algorithm
M Wienöbst, M Liśkiewicz
German Conference on Artificial Intelligence (Künstliche Intelligenz), 276-288, 2021
32021
PACE Solver Description: PID^⋆
M Bannach, S Berndt, M Schuster, M Wienöbst
15th International Symposium on Parameterized and Exact Computation (IPEC …, 2020
32020
Identification in tree-shaped linear structural causal models
B Van Der Zander, M Wienöbst, M Bläser, M Liskiewicz
International Conference on Artificial Intelligence and Statistics, 6770-6792, 2022
22022
Practical algorithms for orientations of partially directed graphical models
M Luttermann, M Wienöbst, M Liskiewicz
Conference on Causal Learning and Reasoning, 259-280, 2023
12023
PACE solver description: Fluid
M Bannach, S Berndt, M Schuster, M Wienöbst
15th International Symposium on Parameterized and Exact Computation (IPEC …, 2020
12020
Embracing Discrete Search: A Reasonable Approach to Causal Structure Learning
M Wienöbst, L Henckel, S Weichwald
arXiv preprint arXiv:2510.04970, 2025
2025
Linear-Time Primitives for Algorithm Development in Graphical Causal Inference
M Wienöbst, S Weichwald, L Henckel
arXiv preprint arXiv:2506.15758, 2025
2025
PACE Solver Description: UzL Solver for Dominating Set and Hitting Set
M Bannach, F Chudigiewitsch, M Wienöbst
20th International Symposium on Parameterized and Exact Computation (IPEC …, 2025
2025
CausalInference. jl
M Schauer, M Keller, M Wienöbst
Zenodo, 2024
2024
Algorithms for Markov Equivalence
M Wienöbst
Zentrale Hochschulbibliothek Lübeck, 2024
2024
Constraint-based causal structure learning exploiting low-order conditional independences
M Wienöbst, M Liśkiewicz
2019
The system can't perform the operation now. Try again later.
Articles 1–20