[go: up one dir, main page]

Follow
Filip Ekström Kelvinius
Title
Cited by
Cited by
Year
Accelerating Molecular Graph Neural Networks via Knowledge Distillation
F Ekström Kelvinius, D Georgiev, A Toshev, J Gasteiger
Advances in Neural Information Processing Systems 36, 2023
362023
Graph-based machine learning beyond stable materials and relaxed crystal structures
F Ekström Kelvinius, R Armiento, F Lindsten
Physical Review Materials 6 (3), 033801, 2022
132022
WyckoffDiff-A Generative Diffusion Model for Crystal Symmetry
F Ekström Kelvinius, OB Andersson, AS Parackal, D Qian, R Armiento, ...
ICML 2025, 2025
12*2025
Discriminator Guidance for Autoregressive Diffusion Models
F Ekström Kelvinius, F Lindsten
International Conference on Artificial Intelligence and Statistics, 3403-3411, 2024
72024
Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled Diffusion Sequential Monte Carlo
F Ekström Kelvinius, Z Zhao, F Lindsten
ICML 2025, 2025
6*2025
Autoregressive Diffusion Models with non-Uniform Generation Order
F Ekström Kelvinius, F Lindsten
ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative …, 2023
22023
Deep Learning for the Atomic Scale: Graph Neural Networks and Deep Generative Models with Some Applications to Materials and Molecules
F Ekström Kelvinius
Linköping University Electronic Press, 2025
2025
Graph neural networks for prediction of formation energies of crystals
F Ekström
2020
The system can't perform the operation now. Try again later.
Articles 1–8