[go: up one dir, main page]

Follow
Hong Ye Tan
Hong Ye Tan
Hedrick Assistant Adjunct Professor, UCLA
Verified email at math.ucla.edu
Title
Cited by
Cited by
Year
Provably convergent plug-and-play quasi-Newton methods
HY Tan, S Mukherjee, J Tang, CB Schönlieb
SIAM Journal on Imaging Sciences 17 (2), 785-819, 2024
362024
Data-driven mirror descent with input-convex neural networks
HY Tan, S Mukherjee, J Tang, CB Schönlieb
SIAM Journal on Mathematics of Data Science 5 (2), 558-587, 2023
202023
Noise-free sampling algorithms via regularized Wasserstein proximals
HY Tan, S Osher, W Li
Research in the Mathematical Sciences 11 (4), 65, 2024
112024
Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging
M Carioni, S Mukherjee, HY Tan, J Tang
Data-driven Models in Inverse Problems, 2024
72024
Boosting data-driven mirror descent with randomization, equivariance, and acceleration
HY Tan, S Mukherjee, J Tang, CB Schönlieb
Transactions on Machine Learning Research, 2024
72024
Unsupervised training of convex regularizers using maximum likelihood estimation
HY Tan, Z Cai, M Pereyra, S Mukherjee, J Tang, CB Schönlieb
arXiv preprint arXiv:2404.05445, 2024
62024
Robust data-driven accelerated mirror descent
HY Tan, S Mukherjee, J Tang, A Hauptmann, CB Schönlieb
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and …, 2023
22023
Dataset Distillation as Pushforward Optimal Quantization
HY Tan, E Slade
arXiv preprint arXiv:2501.07681, 2025
12025
Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging
M Carioni, S Mukherjee, HY Tan, J Tang
De Gruyter, 2025
12025
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
HY Tan, S Mukherjee, J Tang, CB Schönlieb
arXiv preprint arXiv:2408.06996, 2024
12024
Solving Imaging Inverse Problems Using Plug-and-Play Denoisers: Regularization and Optimization Perspectives
HY Tan, S Mukherjee, J Tang
arXiv preprint arXiv:2509.03475, 2025
2025
Preconditioned Regularized Wasserstein Proximal Sampling
HY Tan, S Osher, W Li
arXiv preprint arXiv:2509.01685, 2025
2025
Designing Provably Convergent Algorithms from the Geometry of Data
HY Tan
University of Cambridge, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–13