| A nonlocal convection–diffusion equation LI Ignat, JD Rossi Journal of Functional Analysis 251 (2), 399-437, 2007 | 187 | 2007 |
| Numerical dispersive schemes for the nonlinear Schrödinger equation LI Ignat, E Zuazua SIAM journal on numerical analysis 47 (2), 1366-1390, 2009 | 91 | 2009 |
| Decay estimates for nonlocal problems via energy methods LI Ignat, JD Rossi Journal de mathématiques pures et appliquées 92 (2), 163-187, 2009 | 72 | 2009 |
| Refined asymptotic expansions for nonlocal diffusion equations LI Ignat, JD Rossi Journal of Evolution Equations 8 (4), 617-629, 2008 | 52 | 2008 |
| A splitting method for the nonlinear Schrödinger equation LI Ignat Journal of Differential Equations 250 (7), 3022-3046, 2011 | 49 | 2011 |
| Convergence of a two-grid algorithm for the control of the wave equation LI Ignat, E Zuazua Journal of the European Mathematical Society 11 (2), 351-391, 2009 | 49 | 2009 |
| Dispersion for the Schrödinger equation on networks V Banica, LI Ignat Journal of mathematical physics 52 (8), 2011 | 46 | 2011 |
| Inverse problem for the heat equation and the Schrödinger equation on a tree LI Ignat, AF Pazoto, L Rosier Inverse Problems 28 (1), 015011, 2011 | 42 | 2011 |
| Dispersive properties of a viscous numerical scheme for the Schrödinger equation LI Ignat, E Zuazua Comptes rendus. Mathématique 340 (7), 529-534, 2005 | 41 | 2005 |
| A two-grid approximation scheme for nonlinear Schrödinger equations: dispersive properties and convergence LI Ignat, E Zuazua Comptes Rendus. Mathématique 341 (6), 381-386, 2005 | 38 | 2005 |
| Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees V Banica, L Ignat Analysis & PDE 7 (4), 903-927, 2014 | 33 | 2014 |
| Convergence rates for dispersive approximation schemes to nonlinear Schrödinger equations LI Ignat, E Zuazua Journal de mathématiques pures et appliquées 98 (5), 479-517, 2012 | 33 | 2012 |
| Dispersive properties of numerical schemes for nonlinear Schrödinger equations LI Ignat, E Zuazua Foundations of computational mathematics, Santander 331 (2006), 181-207, 2005 | 28 | 2005 |
| Fully discrete schemes for the Schrödinger equation: Dispersive properties LI Ignat Mathematical Models and Methods in Applied Sciences 17 (04), 567-591, 2007 | 26 | 2007 |
| Asymptotic behavior of solutions to fractional diffusion–convection equations LI Ignat, D Stan Journal of the London Mathematical Society 97 (2), 258-281, 2018 | 23 | 2018 |
| A compactness tool for the analysis of nonlocal evolution equations LI Ignat, TI Ignat, D Stancu-Dumitru SIAM Journal on Mathematical Analysis 47 (2), 1330-1354, 2015 | 22 | 2015 |
| Strichartz estimates for the Schrödinger equation on a tree and applications LI Ignat SIAM journal on mathematical analysis 42 (5), 2041-2057, 2010 | 21 | 2010 |
| Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws L Ignat, A Pozo, E Zuazua Mathematics of computation 84 (294), 1633-1662, 2015 | 20 | 2015 |
| The Schrödinger equation on a star-shaped graph under general coupling conditions A Grecu, LI Ignat Journal of Physics A: Mathematical and Theoretical 52 (3), 035202, 2018 | 19 | 2018 |
| Null-Controllability of the Linear Kuramoto--Sivashinsky Equation on Star-Shaped Trees CM Cazacu, LI Ignat, AF Pazoto SIAM Journal on Control and Optimization 56 (4), 2921-2958, 2018 | 19 | 2018 |