| Analysis of a new space-time parallel multigrid algorithm for parabolic problems MJ Gander, M Neumuller SIAM Journal on Scientific Computing 38 (4), A2173-A2208, 2016 | 214 | 2016 |
| Space–time isogeometric analysis of parabolic evolution problems U Langer, SE Moore, M Neumüller Computer methods in applied mechanics and engineering 306, 342-363, 2016 | 149 | 2016 |
| Space-time methods: fast solvers and applications M Neumüller | 80 | 2013 |
| Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods M Neumüller, O Steinbach Computing and visualization in science 14 (5), 189-205, 2011 | 61 | 2011 |
| Generating admissible space-time meshes for moving domains in (d+ 1) dimensions M Neumüller, E Karabelas Space-Time Methods: Applications to Partial Differential Equations 25, 185, 2019 | 35 | 2019 |
| Time-parallel iterative solvers for parabolic evolution equations M Neumüller, I Smears SIAM Journal on Scientific Computing 41 (1), C28-C51, 2019 | 30 | 2019 |
| Space-time finite element methods for parabolic evolution problems with variable coefficients U Langer, M Neumüller, A Schafelner Chemnitz Fine Element Symposium, 247-275, 2017 | 29 | 2017 |
| Parallel and robust preconditioning for space-time isogeometric analysis of parabolic evolution problems C Hofer, U Langer, M Neumüller, R Schneckenleitner SIAM Journal on Scientific Computing 41 (3), A1793-A1821, 2019 | 28 | 2019 |
| Time-multipatch discontinuous Galerkin space-time isogeometric analysis of parabolic evolution problems C Hofer, U Langer, M Neumüller, I Toulopoulos University of Cape Coast, 2018 | 28 | 2018 |
| Regularization error estimates for distributed control problems in energy spaces M Neumüller, O Steinbach Mathematical Methods in the Applied Sciences 44 (5), 4176-4191, 2021 | 22 | 2021 |
| Space-time discretizations using constrained first-order system least squares (CFOSLS) K Voronin, CS Lee, M Neumüller, P Sepulveda, PS Vassilevski Journal of Computational Physics 373, 863-876, 2018 | 19 | 2018 |
| The auxiliary space preconditioner for the de Rham complex J Gopalakrishnan, M Neumüller, PS Vassilevski SIAM Journal on Numerical Analysis 56 (6), 3196-3218, 2018 | 17 | 2018 |
| Direct and iterative solvers U Langer, M Neumüller Computational Acoustics, 205-251, 2017 | 14 | 2017 |
| Space-time CFOSLS methods with AMGe upscaling M Neumüller, PS Vassilevski, UE Villa Domain Decomposition Methods in Science and Engineering XXIII, 253-260, 2017 | 13 | 2017 |
| Multipatch space-time isogeometric analysis of parabolic diffusion problems U Langer, M Neumüller, I Toulopoulos International Conference on Large-Scale Scientific Computing, 21-32, 2017 | 12 | 2017 |
| A DG space–time domain decomposition method M Neumüller, O Steinbach Domain decomposition methods in science and engineering XX, 623-630, 2013 | 11 | 2013 |
| Adaptive space-time isogeometric analysis for parabolic evolution problems U Langer, S Matculevich, S Repin De Gruyter 9, 141-184, 2019 | 10 | 2019 |
| Eine Finite Elemente Methode für optimale Kontrollprobleme mit parabolischen Randwertaufgaben M Neumüller | 9 | 2010 |
| Inverse inequality estimates with symbolic computation C Koutschan, M Neumüller, CS Radu Advances in Applied Mathematics 80, 1-23, 2016 | 8 | 2016 |
| Analysis of a time multigrid algorithm for DG-discretizations in time MJ Gander, M Neumüller arXiv preprint arXiv:1409.5254, 2014 | 7 | 2014 |