[go: up one dir, main page]

Follow
Lukas Schott
Title
Cited by
Cited by
Year
Towards the first adversarially robust neural network model on MNIST
L Schott, J Rauber, M Bethge, W Brendel
International Conference on Learning Representations 2019, 2018
4882018
A simple way to make neural networks robust against diverse image corruptions
E Rusak, L Schott, RS Zimmermann, J Bitterwolf, O Bringmann, M Bethge, ...
European conference on computer vision, 53-69, 2020
2852020
Comparative study of deep learning software frameworks
S Bahrampour, N Ramakrishnan, L Schott, M Shah
arXiv preprint arXiv:1511.06435, 2015
2532015
Towards nonlinear disentanglement in natural data with temporal sparse coding
D Klindt, L Schott, Y Sharma, I Ustyuzhaninov, W Brendel, M Bethge, ...
arXiv preprint arXiv:2007.10930, 2020
1772020
Comparative study of caffe, neon, theano, and torch for deep learning
S Bahrampour, N Ramakrishnan, L Schott, M Shah
1462016
Visual representation learning does not generalize strongly within the same domain
L Schott, J Von Kügelgen, F Träuble, P Gehler, C Russell, M Bethge, ...
arXiv preprint arXiv:2107.08221, 2021
972021
Score-based generative classifiers
RS Zimmermann, L Schott, Y Song, BA Dunn, DA Klindt
arXiv preprint arXiv:2110.00473, 2021
922021
Increasing the robustness of dnns against im-age corruptions by playing the game of noise
E Rusak, L Schott, R Zimmermann, J Bitterwolfb, O Bringmann, M Bethge, ...
582020
Learned watershed: End-to-end learning of seeded segmentation
S Wolf, L Schott, U Kothe, F Hamprecht
Proceedings of the IEEE International Conference on Computer Vision, 2011-2019, 2017
582017
Deep learning on symbolic representations for large-scale heterogeneous time-series event prediction
S Zhang, S Bahrampour, N Ramakrishnan, L Schott, M Shah
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2016
352016
Understanding neural coding on latent manifolds by sharing features and dividing ensembles
M Bjerke, L Schott, KT Jensen, C Battistin, DA Klindt, BA Dunn
arXiv preprint arXiv:2210.03155, 2022
132022
Analytical uncertainty-based loss weighting in multi-task learning
L Kirchdorfer, C Elich, S Kutsche, H Stuckenschmidt, L Schott, JM Köhler
DAGM German Conference on Pattern Recognition, 344-361, 2024
102024
Towards the first adversarially robust neural network model on mnist (2018)
L Schott, J Rauber, M Bethge, W Brendel
arXiv preprint arXiv:1805.09190, 2018
102018
Challenging common assumptions in multi-task learning
C Elich, L Kirchdorfer, JM Köhler, L Schott
arXiv preprint arXiv:2311.04698, 2023
72023
Comparative study of deep learning software frameworks. arXiv 2015
S Bahrampour, N Ramakrishnan, L Schott, M Shah
arXiv preprint arXiv:1511.06435 3, 0
7
Mind the gap between synthetic and real: Utilizing transfer learning to probe the boundaries of stable diffusion generated data
L Hennicke, CM Adriano, H Giese, JM Koehler, L Schott
arXiv preprint arXiv:2405.03243, 2024
62024
Attention Is All You Need For Mixture-of-Depths Routing
A Gadhikar, SK Majumdar, N Popp, P Saranrittichai, M Rapp, L Schott
arXiv preprint arXiv:2412.20875, 2024
52024
Examining common paradigms in multi-task learning
C Elich, L Kirchdorfer, JM Köhler, L Schott
DAGM German Conference on Pattern Recognition, 131-147, 2024
52024
Comparative study of Caffe
S Bahrampour, N Ramakrishnan, L Schott, M Shah
Neon, Theano, and Torch for Deep Learning. arXiv 20151511, 2015
42015
Improving Knowledge Distillation Under Unknown Covariate Shift Through Confidence-Guided Data Augmentation
N Popp, KA Laube, M Hein, L Schott
arXiv preprint arXiv:2506.02294, 2025
12025
The system can't perform the operation now. Try again later.
Articles 1–20