[go: up one dir, main page]

Follow
Amanda Bertsch
Amanda Bertsch
PhD student, Language Technologies Institute, Carnegie Mellon University
Verified email at cs.cmu.edu - Homepage
Title
Cited by
Cited by
Year
Unlimiformer: Long-range transformers with unlimited length input
A Bertsch, U Alon, G Neubig, MR Gormley
NeurIPS 2023, 2023
1752023
From decoding to meta-generation: Inference-time algorithms for large language models
S Welleck, A Bertsch, M Finlayson, H Schoelkopf, A Xie, G Neubig, ...
arXiv preprint arXiv:2406.16838, 2024
1212024
In-context learning with long-context models: An in-depth exploration
A Bertsch, M Ivgi, E Xiao, U Alon, J Berant, MR Gormley, G Neubig
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of …, 2025
1122025
Bridging the gap: A survey on integrating (human) feedback for natural language generation
P Fernandes, A Madaan, E Liu, A Farinhas, PH Martins, A Bertsch, ...
Transactions of the Association of Computational Linguistics, 2023
1072023
Llms as workers in human-computational algorithms? replicating crowdsourcing pipelines with llms
T Wu, H Zhu, M Albayrak, A Axon, A Bertsch, W Deng, Z Ding, B Guo, ...
Proceedings of the Extended Abstracts of the CHI Conference on Human Factors …, 2025
652025
Prompt2Model: Generating Deployable Models from Natural Language Instructions
V Viswanathan, C Zhao, A Bertsch, T Wu, G Neubig
EMNLP Demo, 2023
492023
It's MBR all the way down: Modern generation techniques through the lens of minimum Bayes risk
A Bertsch, A Xie, G Neubig, MR Gormley
arXiv preprint arXiv:2310.01387, 2023
392023
Summqa at mediqa-chat 2023: In-context learning with gpt-4 for medical summarization
Y Mathur, S Rangreji, R Kapoor, M Palavalli, A Bertsch, MR Gormley
arXiv preprint arXiv:2306.17384, 2023
302023
To build our future, we must know our past: Contextualizing paradigm shifts in natural language processing
S Gururaja, A Bertsch, C Na, D Widder, E Strubell
Proceedings of the 2023 Conference on Empirical Methods in Natural Language …, 2023
202023
A taxonomy for data contamination in large language models
M Palavalli, A Bertsch, MR Gormley
arXiv preprint arXiv:2407.08716, 2024
152024
Better instruction-following through minimum bayes risk
I Wu, P Fernandes, A Bertsch, S Kim, S Pakazad, G Neubig
arXiv preprint arXiv:2410.02902, 2024
142024
Detection of puffery on the english wikipedia
A Bertsch, S Bethard
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021 …, 2021
102021
Not-just-scaling laws: Towards a better understanding of the downstream impact of language model design decisions
E Liu, A Bertsch, L Sutawika, L Tjuatja, P Fernandes, L Marinov, M Chen, ...
arXiv preprint arXiv:2503.03862, 2025
72025
He Said, She Said: Style Transfer for Shifting the Perspective of Dialogues
A Bertsch, G Neubig, MR Gormley
Findings of EMNLP, 2022
72022
Evaluating gender bias transfer from film data
A Bertsch, A Oh, S Natu, S Gangu, AW Black, E Strubell
Proceedings of the 4th Workshop on Gender Bias in Natural Language …, 2022
52022
Efficient Many-Shot In-Context Learning with Dynamic Block-Sparse Attention
E Xiao, CJ Li, Y Zhang, G Neubig, A Bertsch
arXiv preprint arXiv:2503.08640, 2025
22025
Olmo 3
T Olmo, A Ettinger, A Bertsch, B Kuehl, D Graham, D Heineman, ...
arXiv preprint arXiv:2512.13961, 2025
12025
Oolong: Evaluating long context reasoning and aggregation capabilities
A Bertsch, A Pratapa, T Mitamura, G Neubig, MR Gormley
arXiv preprint arXiv:2511.02817, 2025
12025
Prompt-MII: Meta-Learning Instruction Induction for LLMs
E Xiao, Y Zeng, A Chen, CJ Li, A Bertsch, G Neubig
arXiv preprint arXiv:2510.16932, 2025
12025
FicSim: A Dataset for Multi-Faceted Semantic Similarity in Long-Form Fiction
N Johnson, A Bertsch, ME Deal, E Strubell
Findings of the Association for Computational Linguistics: EMNLP 2025, 25228 …, 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20