[go: up one dir, main page]

Follow
Matthew Blaschko
Matthew Blaschko
Verified email at esat.kuleuven.be - Homepage
Title
Cited by
Cited by
Year
Fine-grained visual classification of aircraft
S Maji, E Rahtu, J Kannala, M Blaschko, A Vedaldi
arXiv preprint arXiv:1306.5151, 2013
33342013
The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
M Berman, A Rannen Triki, MB Blaschko
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018
13722018
Beyond sliding windows: Object localization by efficient subwindow search
CH Lampert, MB Blaschko, T Hofmann
2008 IEEE conference on computer vision and pattern recognition, 1-8, 2008
10732008
Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice
J Bertels, T Eelbode, M Berman, D Vandermeulen, F Maes, R Bisschops, ...
International conference on medical image computing and computer-assisted …, 2019
874*2019
Metrics reloaded: recommendations for image analysis validation
L Maier-Hein, A Reinke, P Godau, MD Tizabi, F Buettner, E Christodoulou, ...
Nature methods, 1-18, 2024
632*2024
A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images
JI Orlando, E Prokofyeva, MB Blaschko
IEEE transactions on Biomedical Engineering 64 (1), 16-27, 2016
5842016
Efficient subwindow search: A branch and bound framework for object localization
CH Lampert, MB Blaschko, T Hofmann
IEEE transactions on pattern analysis and machine intelligence 31 (12), 2129 …, 2009
5232009
Learning to localize objects with structured output regression
MB Blaschko, CH Lampert
European conference on computer vision, 2-15, 2008
4832008
Encoder based lifelong learning
A Rannen, R Aljundi, MB Blaschko, T Tuytelaars
Proceedings of the IEEE international conference on computer vision, 1320-1328, 2017
4762017
Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index
T Eelbode, J Bertels, M Berman, D Vandermeulen, F Maes, R Bisschops, ...
IEEE transactions on medical imaging 39 (11), 3679-3690, 2020
4732020
An ensemble deep learning based approach for red lesion detection in fundus images
JI Orlando, E Prokofyeva, M Del Fresno, MB Blaschko
Computer methods and programs in biomedicine 153, 115-127, 2018
3682018
Combining local and global image features for object class recognition
DA Lisin, MA Mattar, MB Blaschko, EG Learned-Miller, MC Benfield
2005 IEEE computer society conference on computer vision and pattern …, 2005
3142005
Common limitations of image processing metrics: A picture story
A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ...
arXiv preprint arXiv:2104.05642, 2021
297*2021
Correlational spectral clustering
MB Blaschko, CH Lampert
2008 IEEE conference on computer vision and pattern recognition, 1-8, 2008
2832008
Unsupervised object discovery: A comparison
T Tuytelaars, CH Lampert, MB Blaschko, W Buntine
International journal of computer vision 88 (2), 284-302, 2010
2582010
Learning a category independent object detection cascade
E Rahtu, J Kannala, M Blaschko
2011 international conference on Computer Vision, 1052-1059, 2011
2192011
R-gap: Recursive gradient attack on privacy
J Zhu, M Blaschko
International Conference on Learning Representations (ICLR), 2021
2102021
Convolutional neural network transfer for automated glaucoma identification
JI Orlando, E Prokofyeva, M del Fresno, MB Blaschko
12th international symposium on medical information processing and analysis …, 2017
1822017
Learning fully-connected CRFs for blood vessel segmentation in retinal images
JI Orlando, M Blaschko
international conference on medical image computing and computer-assisted …, 2014
1712014
B-test: A non-parametric, low variance kernel two-sample test
W Zaremba, A Gretton, M Blaschko
Advances in neural information processing systems 26, 2013
1632013
The system can't perform the operation now. Try again later.
Articles 1–20