| The analytic theory of matrix orthogonal polynomials D Damanik, A Pushnitski, B Simon arXiv preprint arXiv:0711.2703, 2007 | 243 | 2007 |
| Spectral shift function, amazing and multifaceted MS Birman, AB Pushnitski Integral Equations and Operator Theory 30 (2), 191-199, 1998 | 72 | 1998 |
| Non-Weyl resonance asymptotics for quantum graphs EB Davies, A Pushnitski Analysis & pde 4 (5), 729-756, 2012 | 63 | 2012 |
| Spectral shift function in strong magnetic fields V Bruneau, AB Pushnitski, G Raykov Алгебра и анализ 16 (1), 207-238, 2004 | 56 | 2004 |
| Representation for the spectral shift function for perturbations of a definite sign AB Pushnitski St.Petersburg Mathematical Journal 9 (6), 1181-1194, 1998 | 55* | 1998 |
| The spectral shift function and the invariance principle A Pushnitski Journal of Functional Analysis 183 (2), 269-320, 2001 | 50 | 2001 |
| On the Koplienko spectral shift function, I. Basics F Gesztesy, A Pushnitski, B Simon Journal of Mathematical Physics, Analysis, Geometry 4 (1), 63-107, 2008 | 44 | 2008 |
| Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains N Filonov, A Pushnitski Communications in mathematical physics 264 (3), 759-772, 2006 | 43 | 2006 |
| Eigenvalue clusters of the Landau Hamiltonian in the exterior of a compact domain A Pushnitski, G Rozenblum Documenta Mathematica 12, 569-586, 2007 | 42 | 2007 |
| A trace formula and high-energy spectral asymptotics for the perturbed Landau Hamiltonian E Korotyaev, A Pushnitski Journal of Functional Analysis 217 (1), 221-248, 2004 | 40 | 2004 |
| Asymptotic density of eigenvalue clusters for the perturbed Landau Hamiltonian A Pushnitski, G Raikov, C Villegas-Blas Communications in Mathematical Physics 320 (2), 425-453, 2013 | 35 | 2013 |
| The spectral flow, the Fredholm index, and the spectral shift function A Pushnitski arXiv preprint arXiv:0711.0089, 2007 | 30 | 2007 |
| Spectral shift function of the Schrodinger operator in the large coupling constant limit AB Pushnitski Funktsional. Anal. i Prilozhen 36, 93-95, 2002 | 25 | 2002 |
| Trace formulae and high energy asymptotics for Stark operator EL Korotyaev, AB Pushnitski Communications in PDE 28 (3&4), 817-842, 2003 | 23 | 2003 |
| The scattering matrix and the differences of spectral projections A Pushnitski Bulletin London Mathematical Society 40, 227-238, 2008 | 22 | 2008 |
| The cubic Szegő equation on the real line: explicit formula and well-posedness on the Hardy class P Gérard, A Pushnitski Communications in Mathematical Physics 405 (7), 167, 2024 | 21 | 2024 |
| Unbounded Hankel operators and the flow of the cubic Szegő equation P Gérard, A Pushnitski Inventiones mathematicae 232 (3), 995-1026, 2023 | 21 | 2023 |
| Operator theoretic methods for the eigenvalue counting function in spectral gaps A Pushnitski Annales Henri Poincaré 10 (4), 793-822, 2009 | 20 | 2009 |
| Spectral shift function in strong magnetic fields V Bruneau, A Pushnitski, G Raikov St. Petersburg Mathematical Journal 16 (1), 181-209, 2005 | 20 | 2005 |
| High energy asymptotics and trace formulas for the perturbed harmonic oscillator A Pushnitski, I Sorrell Annales Henri Poincare 7 (2), 381-396, 2006 | 19 | 2006 |