[go: up one dir, main page]

Follow
Tianyun Zhang
Title
Cited by
Cited by
Year
A systematic DNN weight pruning framework using alternating direction method of multipliers
T Zhang, S Ye, K Zhang, J Tang, W Wen, M Fardad, Y Wang
European Conference on Computer Vision 2018 (ECCV 2018), 191-207, 2018
6812018
Admm-nn: An algorithm-hardware co-design framework of dnns using alternating direction methods of multipliers
A Ren, T Zhang, S Ye, J Li, W Xu, X Qian, X Lin, Y Wang
Proceedings of the Twenty-Fourth International Conference on Architectural …, 2019
2362019
Structadmm: Achieving ultrahigh efficiency in structured pruning for dnns
T Zhang, S Ye, X Feng, X Ma, K Zhang, Z Li, J Tang, S Liu, X Lin, Y Liu, ...
IEEE Transactions on Neural Networks and Learning Systems 33 (5), 2259-2273, 2021
177*2021
Progressive dnn compression: A key to achieve ultra-high weight pruning and quantization rates using admm
S Ye, X Feng, T Zhang, X Ma, S Lin, Z Li, K Xu, W Wen, S Liu, J Tang, ...
arXiv preprint arXiv:1903.09769, 2019
124*2019
Adversarial attack generation empowered by min-max optimization
J Wang, T Zhang, S Liu, PY Chen, J Xu, M Fardad, B Li
Advances in Neural Information Processing Systems 34, 16020-16033, 2021
87*2021
Achieving on-mobile real-time super-resolution with neural architecture and pruning search
Z Zhan, Y Gong, P Zhao, G Yuan, W Niu, Y Wu, T Zhang, M Jayaweera, ...
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
872021
A unified framework of dnn weight pruning and weight clustering/quantization using admm
S Ye, T Zhang, K Zhang, J Li, J Xie, Y Liang, S Liu, X Lin, Y Wang
arXiv preprint arXiv:1811.01907, 2018
752018
An ultra-efficient memristor-based DNN framework with structured weight pruning and quantization using ADMM
G Yuan, X Ma, C Ding, S Lin, T Zhang, ZS Jalali, Y Zhao, L Jiang, ...
2019 IEEE/ACM International Symposium on Low Power Electronics and Design …, 2019
732019
Sgcn: A graph sparsifier based on graph convolutional networks
J Li, T Zhang, H Tian, S Jin, M Fardad, R Zafarani
Pacific-Asia Conference on Knowledge Discovery and Data Mining, 275-287, 2020
722020
Efficient transformer-based large scale language representations using hardware-friendly block structured pruning
B Li, Z Kong, T Zhang, J Li, Z Li, H Liu, C Ding
Proceedings of the 2020 Conference on Empirical Methods in Natural Language …, 2020
582020
Deep transfer learning for intelligent vehicle perception: A survey
X Liu, J Li, J Ma, H Sun, Z Xu, T Zhang, H Yu
Green Energy and Intelligent Transportation 2 (5), 100125, 2023
522023
An image enhancing pattern-based sparsity for real-time inference on mobile devices
X Ma, W Niu, T Zhang, S Liu, S Lin, H Li, W Wen, X Chen, J Tang, K Ma, ...
European Conference on Computer Vision, 629-645, 2020
402020
A Unified DNN Weight Pruning Framework Using Reweighted Optimization Methods
T Zhang, X Ma, Z Zhan, S Zhou, C Ding, M Fardad, Y Wang
2021 58th ACM/IEEE Design Automation Conference (DAC), 493-498, 2021
372021
ADMM-based weight pruning for real-time deep learning acceleration on mobile devices
H Li, N Liu, X Ma, S Lin, S Ye, T Zhang, X Lin, W Xu, Y Wang
Proceedings of the 2019 Great Lakes Symposium on VLSI, 501-506, 2019
352019
Blcr: Towards real-time dnn execution with block-based reweighted pruning
X Ma, G Yuan, Z Li, Y Gong, T Zhang, W Niu, Z Zhan, P Zhao, N Liu, ...
2022 23rd International Symposium on Quality Electronic Design (ISQED), 1-8, 2022
29*2022
Graph sparsification with graph convolutional networks
J Li, T Zhang, H Tian, S Jin, M Fardad, R Zafarani
International journal of data science and analytics 13 (1), 33-46, 2022
292022
Defense against adversarial cloud attack on remote sensing salient object detection
H Sun, L Fu, J Li, Q Guo, Z Meng, T Zhang, Y Lin, H Yu
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2024
252024
Computation on sparse neural networks and its implications for future hardware
F Sun, M Qin, T Zhang, L Liu, YK Chen, Y Xie
2020 57th ACM/IEEE Design Automation Conference (DAC), 1-6, 2020
13*2020
A unified DNN weight compression framework using reweighted optimization methods
M Fan, T Zhang, X Ma, J Guo, Z Zhan, S Zhou, M Qin, C Ding, B Geng, ...
Intelligent Systems with Applications, 200556, 2025
9*2025
Towards aqfp-capable physical design automation
H Li, M Sun, T Zhang, O Chen, N Yoshikawa, B Yu, Y Wang, Y Lin
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 954-959, 2021
92021
The system can't perform the operation now. Try again later.
Articles 1–20