[go: up one dir, main page]

Follow
Christian Schroeder de Witt
Christian Schroeder de Witt
Verified email at robots.ox.ac.uk - Homepage
Title
Cited by
Cited by
Year
Monotonic value function factorisation for deep multi-agent reinforcement learning
T Rashid, M Samvelyan, C Schroeder de Witt, G Farquhar, JN Foerster, ...
Journal of Machine Learning Research 21, 2020
38112020
The Starcraft Multi-Agent Challenge
M Samvelyan, T Rashid, C Schroeder de Witt, G Farquhar, N Nardelli, ...
AAMAS 2019, 2019
15662019
Is independent learning all you need in the starcraft multi-agent challenge?
CS De Witt, T Gupta, D Makoviichuk, V Makoviychuk, PHS Torr, M Sun, ...
arXiv preprint arXiv:2011.09533, 2020
6152020
FACMAC: Factored Multi-Agent Centralised Policy Gradients
B Peng, T Rashid, C Schroeder de Witt, PA Kamienny, P Torr, W Böhmer, ...
Advances in Neural Information Processing Systems 34, 2021
4012021
Humanity's last exam
L Phan, A Gatti, Z Han, N Li, J Hu, H Zhang, CBC Zhang, M Shaaban, ...
arXiv preprint arXiv:2501.14249, 2025
3012025
Foundational challenges in assuring alignment and safety of large language models
U Anwar, A Saparov, J Rando, D Paleka, M Turpin, P Hase, ES Lubana, ...
arXiv preprint arXiv:2404.09932, 2024
2962024
Multi-Agent Common Knowledge Reinforcement Learning
C Schroeder de Witt, J Foerster, G Farquhar, P Torr, W Boehmer, ...
Advances in Neural Information Processing Systems, 9927-9939, 2019
151*2019
Discovered policy optimisation
C Lu, J Kuba, A Letcher, L Metz, C Schroeder de Witt, J Foerster
Advances in Neural Information Processing Systems 35, 16455-16468, 2022
1492022
Randomized entity-wise factorization for multi-agent reinforcement learning
S Iqbal, CAS De Witt, B Peng, W Böhmer, S Whiteson, F Sha
International Conference on Machine Learning, 4596-4606, 2021
137*2021
Jaxmarl: Multi-agent rl environments and algorithms in jax
A Rutherford, B Ellis, M Gallici, J Cook, A Lupu, G Ingvarsson Juto, T Willi, ...
Advances in Neural Information Processing Systems 37, 50925-50951, 2024
1302024
Deep Multi-Agent Reinforcement Learning for Decentralized Continuous Cooperative Control
C Schroeder de Witt, B Peng, PA Kamienny, P Torr, W Böhmer, ...
arXiv preprint arXiv:2003.06709, 2020
1182020
Multi-agent risks from advanced ai
L Hammond, A Chan, J Clifton, J Hoelscher-Obermaier, A Khan, ...
arXiv preprint arXiv:2502.14143, 2025
972025
Secret collusion among ai agents: Multi-agent deception via steganography
S Motwani, M Baranchuk, M Strohmeier, V Bolina, P Torr, L Hammond, ...
Advances in Neural Information Processing Systems 37, 73439-73486, 2024
81*2024
Model-free opponent shaping
C Lu, T Willi, CAS De Witt, J Foerster
International Conference on Machine Learning, 14398-14411, 2022
792022
Perfectly Secure Steganography Using Minimum Entropy Coupling
C Schroeder de Witt*, S Sokota*, JZ Kolter, J Foerster, M Strohmeier
ICLR 2023 (featured by Scientific American, Quanta Magazine, Bruce Schneier …, 2023
59*2023
Risks and opportunities of open-source generative AI
F Eiras, A Petrov, B Vidgen, C Schroeder, F Pizzati, K Elkins, ...
arXiv preprint arXiv:2405.08597, 2024
542024
The ZX-Calculus is Incomplete for Quantum Mechanics
C Schroeder de Witt, V Zamdzhiev
Quantum Physics and Logic (QPL) 2014, 2014
52*2014
Malt: Improving reasoning with multi-agent llm training
SR Motwani, C Smith, RJ Das, R Rafailov, I Laptev, PHS Torr, F Pizzati, ...
arXiv preprint arXiv:2412.01928, 2024
452024
Comparative global AI regulation: policy perspectives from the EU, China, and the US
J Chun, CS de Witt, K Elkins
arXiv preprint arXiv:2410.21279, 2024
382024
Mirror learning: A unifying framework of policy optimisation
J Grudzien, CAS De Witt, J Foerster
International Conference on Machine Learning, 7825-7844, 2022
38*2022
The system can't perform the operation now. Try again later.
Articles 1–20