[go: up one dir, main page]

Follow
Nicholas Krämer
Title
Cited by
Cited by
Year
A Probabilistic State Space Model for Joint Inference from Differential Equations and Data
J Schmidt, N Krämer, P Hennig
Advances in Neural Information Processing Systems 34, 12374-12385, 2021
332021
Stable Implementation of Probabilistic ODE Solvers
N Krämer, P Hennig
Journal of Machine Learning Research 25 (111), 1-29, 2024
27*2024
Differentiable likelihoods for fast inversion of ’likelihood-free’ dynamical systems
H Kersting, N Krämer, M Schiegg, C Daniel, M Tiemann, P Hennig
International Conference on Machine Learning, 5198-5208, 2020
272020
Probabilistic ODE Solutions in Millions of Dimensions
N Krämer, N Bosch, J Schmidt, P Hennig
International Conference on Machine Learning, 11634-11649, 2022
242022
ProbNum: Probabilistic Numerics in Python
J Wenger, N Krämer, M Pförtner, J Schmidt, N Bosch, N Effenberger, ...
arXiv preprint arXiv:2112.02100, 2021
222021
Probabilistic Numerical Method of Lines for Time-Dependent Partial Differential Equations
N Krämer, J Schmidt, P Hennig
International Conference on Artificial Intelligence and Statistics, 625-639, 2022
212022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
E Magnani, N Krämer, R Eschenhagen, L Rosasco, P Hennig
arXiv preprint arXiv:2208.01565, 2022
202022
Linear-Time Probabilistic Solutions of Boundary Value Problems
N Krämer, P Hennig
Advances in Neural Information Processing Systems 34, 2021
122021
Implementing probabilistic numerical solvers for differential equations
N Krämer
Dissertation, Tübingen, Universität Tübingen, 2024, 2023
52023
A tutorial on automatic differentiation with complex numbers
N Krämer
arXiv preprint arXiv:2409.06752, 2024
42024
Probabilistic solvers enable a straight-forward exploration of numerical uncertainty in neuroscience models
J Oesterle, N Krämer, P Hennig, P Berens
Journal of Computational Neuroscience 50 (4), 485-503, 2022
4*2022
Numerically Robust Fixed-Point Smoothing Without State Augmentation
N Krämer
Transactions on Machine Learning Research, 2025
22025
Gradients of Functions of Large Matrices
N Krämer, P Moreno-Muñoz, H Roy, S Hauberg
Advances in Neural Information Processing Systems 37, 49484-49518, 2024
22024
VIKING: Deep variational inference with stochastic projections
SG Fadel, H Roy, N Krämer, Y Zainchkovskyy, S Syrota, AV Mahou, ...
arXiv preprint arXiv:2510.23684, 2025
2025
Matrix-Free Least Squares Solvers: Values, Gradients, and What to Do With Them
H Roy, S Hauberg, N Krämer
arXiv preprint arXiv:2510.19634, 2025
2025
Numerically robust Gaussian state estimation with singular observation noise
N Krämer, F Tronarp
arXiv preprint arXiv:2503.10279, 2025
2025
Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
N Krämer
arXiv preprint arXiv:2410.10530, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–17