| Real-time pandemic surveillance using hospital admissions and mobility data SJ Fox, M Lachmann, M Tec, R Pasco, S Woody, Z Du, X Wang, TA Ingle, ... Proceedings of the National Academy of Sciences 119 (7), e2111870119, 2022 | 65 | 2022 |
| Adversarial Intrinsic Motivation for Reinforcement Learning I Durugkar, M Tec, S Niekum, P Stone NeurIPS 2021, 2021 | 62 | 2021 |
| Evaluation of ride-sourcing search frictions and driver productivity: A spatial denoising approach N Zuniga-Garcia, M Tec, JG Scott, N Ruiz-Juri, RB Machemehl Transportation Research Part C: Emerging Technologies 110, 346-367, 2020 | 35 | 2020 |
| Watch Where You’re Going! Gaze and Head Orientation as Predictors for Social Robot Navigation B Holman, A Anwar, A Singh, M Tec, J Hart, P Stone 2021 International Conference on Robotics and Automation (ICRA), 2021 | 28 | 2021 |
| E (n) equivariant topological neural networks C Battiloro, M Tec, G Dasoulas, M Audirac, F Dominici International Conference on Learning Representations (ICLR) 2025, 2025 | 25 | 2025 |
| Weather2vec: Representation learning for causal inference with non-local confounding M Tec, JG Scott, CM Zigler Proceedings of the AAAI Conference on Artificial Intelligence 37 (12), 14504 …, 2023 | 19 | 2023 |
| A Bayesian active learning platform for scalable combination drug screens C Tosh, M Tec, JB White, JF Quinn, G Ibanez Sanchez, P Calder, AL Kung, ... Nature Communications 16 (1), 156, 2025 | 15 | 2025 |
| Random clique covers for graphs with local density and global sparsity SA Williamson, M Tec Uncertainty in Artificial Intelligence, 228-238, 2020 | 13 | 2020 |
| Large-scale spatiotemporal density smoothing with the graph-fused elastic net M Tec, N Zuniga-Garcia, RB Machemehl, JG Scott arXiv preprint arXiv:1911.08106 527, 2019 | 9 | 2019 |
| Towards a real-time, low-resource, end-to-end object detection pipeline for robot soccer SK Narayanaswami, M Tec, I Durugkar, S Desai, B Masetty, S Narvekar, ... Robot World Cup, 62-74, 2022 | 8 | 2022 |
| A comparative tutorial of Bayesian sequential design and reinforcement learning M Tec, Y Duan, P Müller The American Statistician 77 (2), 223-233, 2023 | 6 | 2023 |
| Icml topological deep learning challenge 2024: Beyond the graph domain G Bernárdez, L Telyatnikov, M Montagna, F Baccini, M Papillon, ... arXiv preprint arXiv:2409.05211, 2024 | 5 | 2024 |
| Topobench: A framework for benchmarking topological deep learning L Telyatnikov, G Bernardez, M Montagna, M Hajij, M Carrasco, ... arXiv preprint arXiv:2406.06642, 2024 | 5 | 2024 |
| Bayesian nonparametric adjustment of confounding C Kim, M Tec, C Zigler Biometrics 79 (4), 3252-3265, 2023 | 5 | 2023 |
| Simulation‐based sequential design P Müller, Y Duan, M Garcia Tec Pharmaceutical Statistics 21 (4), 729-739, 2022 | 5 | 2022 |
| An Instrumental Variables Framework to Unite Spatial Confounding Methods SM Woodward, M Tec, F Dominici arXiv preprint arXiv:2411.10381, 2024 | 4 | 2024 |
| Targeted active learning for probabilistic models C Tosh, M Tec, W Tansey arXiv preprint arXiv:2210.12122, 2022 | 4 | 2022 |
| Rule-Bottleneck Reinforcement Learning: Joint Explanation and Decision Optimization for Resource Allocation with Language Agents M Tec, G Xiong, H Wang, F Dominici, M Tambe arXiv preprint arXiv:2502.10732, 2025 | 3 | 2025 |
| Optimizing Heat Alert Issuance with Reinforcement Learning EM Considine, RC Nethery, GA Wellenius, F Dominici, M Tec Proceedings of the AAAI Conference of Artificial Intelligence 39, 2025 | 2* | 2025 |
| SpaCE: The Spatial Confounding Environment M Tec, A Trisovic, M Audirac, S Woodward, JK Hu, N Khoshnevis, ... ICLR 2024, 2023 | 2 | 2023 |