[go: up one dir, main page]

Follow
Valentin Duruisseaux
Valentin Duruisseaux
Postdoctoral Researcher, Caltech
Verified email at caltech.edu - Homepage
Title
Cited by
Cited by
Year
Adaptive Hamiltonian variational integrators and applications to symplectic accelerated optimization
V Duruisseaux, J Schmitt, M Leok
SIAM Journal on Scientific Computing 43 (4), A2949-A2980, 2021
292021
A variational formulation of accelerated optimization on Riemannian manifolds
V Duruisseaux, M Leok
SIAM Journal on Mathematics of Data Science 4 (2), 649-674, 2022
272022
FC-PINO: High Precision Physics-Informed Neural Operators via Fourier Continuation
A Ganeshram, H Maust, V Duruisseaux, Z Li, Y Wang, D Leibovici, ...
arXiv preprint arXiv:2211.15960, 2022
232022
A library for learning neural operators
J Kossaifi, N Kovachki, Z Li, D Pitt, M Liu-Schiaffini, V Duruisseaux, ...
arXiv preprint arXiv:2412.10354, 2024
222024
Lie group forced variational integrator networks for learning and control of robot systems
V Duruisseaux, TP Duong, M Leok, N Atanasov
Learning for Dynamics and Control Conference, 731-744, 2023
222023
Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
V Duruisseaux, JW Burby, Q Tang
Scientific reports 13 (1), 8351, 2023
172023
Accelerated optimization on Riemannian manifolds via discrete constrained variational integrators
V Duruisseaux, M Leok
Journal of Nonlinear Science 32 (4), 42, 2022
152022
Practical perspectives on symplectic accelerated optimization
V Duruisseaux, M Leok
Optimization Methods and Software 38 (6), 1230-1268, 2023
142023
Simplifying momentum-based positive-definite submanifold optimization with applications to deep learning
W Lin, V Duruisseaux, M Leok, F Nielsen, ME Khan, M Schmidt
International Conference on Machine Learning, 21026-21050, 2023
142023
Time-adaptive Lagrangian variational integrators for accelerated optimization on manifolds
V Duruisseaux, M Leok
arXiv preprint arXiv:2201.03774, 2022
122022
Towards enforcing hard physics constraints in operator learning frameworks
V Duruisseaux, M Liu-Schiaffini, J Berner, A Anandkumar
ICML 2024 AI for Science Workshop, 2024
112024
Bistability, bifurcations and chaos in the Mackey-Glass equation
V Duruisseaux, AR Humphries
arXiv preprint arXiv:2203.00181, 2022
92022
Accelerated optimization on Riemannian manifolds via projected variational integrators
V Duruisseaux, M Leok
arXiv preprint arXiv:2201.02904, 2022
82022
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
J Berner, M Liu-Schiaffini, J Kossaifi, V Duruisseaux, B Bonev, ...
arXiv preprint arXiv:2506.10973, 2025
72025
Enabling automatic differentiation with mollified graph neural operators
RY Lin, J Berner, V Duruisseaux, D Pitt, D Leibovici, J Kossaifi, ...
arXiv preprint arXiv:2504.08277, 2025
52025
Accelerated optimization on Riemannian manifolds via projected variational integrators. 2022
V Duruisseaux, M Leok
URL https://arxiv. org/abs/2201.02904 19, 0
5
NOBLE--Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
L Ghafourpour, V Duruisseaux, B Tolooshams, PH Wong, CA Anastassiou, ...
arXiv preprint arXiv:2506.04536, 2025
32025
Projected neural differential equations for learning constrained dynamics
A White, A Büttner, M Gelbrecht, V Duruisseaux, N Kilbertus, F Hellmann, ...
arXiv preprint arXiv:2410.23667, 2024
22024
Simplifying Momentum-based Riemannian Submanifold Optimization.
W Lin, V Duruisseaux, M Leok, F Nielsen, ME Khan, M Schmidt
arXiv preprint arXiv:2302.09738, 2023
22023
Code Demonstration: Approximation of nearly-periodic symplectic maps via structure-preserving neural networks
VN Duruisseaux, JW Burby, Q Tang
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States …, 2023
12023
The system can't perform the operation now. Try again later.
Articles 1–20